Estimating transport costs and trade barriers in China: Direct evidence from Chinese agricultural traders

Economic Analysis
Hong Kong, May 25, 2012
Estimating transport costs and trade barriers in China: Direct evidence from Chinese agricultural traders

Zhigang Li, Xiaohua Yu, Yinchu Zeng, Rainer Holst

25 May 2012

Abstract

Using unique survey data on agricultural traders in China in 2004, this study provides direct evidence on the significance of inter-regional trade barriers and their key components. Our major findings are as follows. (1) The trade barriers within China are fairly small, accounting for about 20 percent of trade value. (2) Transport-related costs and artificial barriers contribute about equally to the trade barriers. (3) Labor and government taxes are the two largest proportions of total transport costs, and account for 35% and 30%, respectively. (4) Road quality is crucial for reducing transport costs within China. Increasing transport speed by 1 km per hour would, mainly due to improved fuel-burning efficiency and reduced labor requirements, decrease total transport costs for Chinese agricultural traders by 0.6 percent.

Keywords: Transport Costs, China, Agricultural Traders, Infrastructure.

1. This work is currently being reviewed by the China Economic Review.
2. Xiaohua Yu and Rainer Holst are at the University of Göttingen; Yinchu Zeng is at Renmin University.
Introduction

Evidences in many developing countries have shown that road construction and reduction of trade barrier can improve fertilizer use, enhance domestic and international trade, increase agricultural output, boost consumption, and reduce poverty (Binswanger et al. 1993; Jacoby and Minten 2009; Khandker et al. 2009; Minten et al. 2005); and China is not an exception (Fan et al. 2002; Fan and Chan-Kang 2005; Huang, Rozelle and Change 2004). Pinstrup-Andersen and Shimokawa (2007) have a comprehensive review about the impacts of rural infrastructure on agricultural development.

However, the current studies find that China succeeded in reducing international trade barrier but failed at reducing domestic trade barrier after the launching of economic reform (Poncet 2003), even though China has kept on investing in infrastructure so far and the length of roads in different classes has been increasing (Fan and Chan-Kang 2005). Amiti and Jaccorick (2008) suggest that China’s domestic market fragmentation is caused by underdeveloped transport infrastructure and informal trade barriers. Specifically, on the one hand, Park et al. (2002) find that much of the increase in transaction costs in China was due to transport bottle-necks in 1990s, particularly in the booming South. On the other hand, Young (2000) proposed that China economic reform caused a fragmented internal market with fiefdoms controlled by local officials whose economic and political benefits are tied to protected local industries.

The hypothesis that market distortions in China caused by high inter-provincial trade barrier is challenged by Holz (2009) who declared that China’s economic reform concerns avoiding the swamp of trade barriers, and the increasing size of highway can significantly reduce the barriers. On the other hand, it cannot be denied that the toll fees of highways are believed to be an important component of trade barriers which is a substantial part of final prices for food products, even though Chinese governments take some special measures to reduce the transport costs.

Regarding the trade barriers within China, there are a few improper perceptions. First, trade barriers in China remain high (Poncet 2003). Second, artificial trade barriers (e.g., due to local protectionism) is a major reason for the high trade barriers in China. (3) Energy cost is a major component of transport costs. These perceptions have not been well scrutinized.

Little evidence is available on why the trade barriers are high and what the main component of trade barriers is. Much research has focused on artificial trade barriers and extrapolates on it. For instance, Young (2000) pointed out the declining price gaps in China results from reduced local protectionism. Research focusing on the physical trade barriers, specifically, transport costs, is only conducted in a very limited way. There is a reason to believe that the system of market economy has not been well developed in China.

To this end this paper contributes new evidence, and more direct evidence to the literature. In particular, we will use a unique survey data for agricultural traders from China in 2004 to decompose the transport costs into different components and examine their determinants as well.

The existing literature has emphasized on the time value of passengers and its related logistics design. Very little evidence exists on the direct effect of transport time on the transport cost, so that simple econometric models will be used to exam the impacts of distance, road condition and transport time on transport cost of agricultural trade in China.

In addition, the current quantitative trade studies, such as the gravity models, have indicated that trade costs are an impediment (Eaton and Kortum 2002; Anderson and van Wincoop 2004; Waugh 2010) particularly for international trade. However, the compositions of trade costs are still unclear which lacks direct evidence, as most of the studies are using indirect methods. In light of this, this study also can be helpful, to some extent, for filling the gaps in the trade literature.

The paper is organized as follows: Section 2 introduces the approaches to decomposing transport costs and the econometric models for estimating the determinants of main components in transport costs; Section 3 describes the data and survey methods, which is followed by discussions of the empirical results in Section 4. Finally, Section 5 draws conclusions.
Data

The data used in this study are from a face-to-face survey of wholesale market traders conducted in August and September 2004, which includes 700 traders in more than 40 wholesale markets scattered among 8 provinces: Beijing, Henan, Ningxia, Sichuan, Shandong, Shanxi, Yunnan and Zhejiang. The questionnaires included detailed information of the traders, such as demographic and family background, social capital, revenue, and costs. Within the 700 traders, only 224 reported detailed information on trade barriers and transport costs and hence employed in this study. Among these traders, 162 use contracted transporters, 46 samples transport goods by themselves, and 16 use both. These traders report information on 210 specific transport routes in total.

A number of traders in our sample had experience using trucks to transport. For these traders, the survey requested detailed information on the total transport costs and the breakdown, including the expenses on fuel, labor\(^3\), toll, fines, food and lodging, and others. In the next part we will take a careful look at the determinants of fuel costs, and total variable costs as well.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Trade barriers and components in China</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Sample</td>
</tr>
<tr>
<td></td>
<td>% S.D.</td>
</tr>
<tr>
<td>Markup Rate</td>
<td>25.66 19.82</td>
</tr>
<tr>
<td>Profit Rate</td>
<td>7.48 7.57</td>
</tr>
<tr>
<td>Weight of Trans. In Trade Barriers</td>
<td>42.05 28.66</td>
</tr>
<tr>
<td>Variable Transport Costs Rate</td>
<td>48.19 40.92</td>
</tr>
<tr>
<td>No. of observations</td>
<td>224 162</td>
</tr>
</tbody>
</table>

Source: Agricultural Surrey on rural traders (2004) and authors’ calculation

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Trade barriers by commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vegetables</td>
</tr>
<tr>
<td></td>
<td>% S.D.</td>
</tr>
<tr>
<td>Markup Rate</td>
<td>29.27 20.39</td>
</tr>
<tr>
<td>Profit Rate</td>
<td>7.83 7.94</td>
</tr>
<tr>
<td>Weight of Trans. In Trade Barriers</td>
<td>44.11 28.94</td>
</tr>
<tr>
<td>No. of observations</td>
<td>162 3</td>
</tr>
</tbody>
</table>

Source: Agricultural Surrey on rural traders (2004) and authors’ calculation

3. Here the labor cost is only defined as the wage paid to transporters, excluding the costs of food and lodging.
Econometric models

Measuring trade barrier and its components

The trade barrier includes the logistics costs of transporting the goods, including expenses on transport, storage, and sales tax. It should reflect on the costs that incur between purchasing and selling of traders. Hence, we may calculate the trade barriers as traders’ markup rates net of their profit rates:

\[\text{Trade barriers} = \text{Traders’ Markup Rate} - \text{Traders’ Profit Rate} \]

(1)

Where the traders’ markup rate is defined as the ratio of the difference between their sale value and their purchase price to their sale value. Deducting the trade barriers from gross markup rate is the net profit rate to traders. A nice feature of our data is that both the markup and profit rates are reported by the traders. Hence, trade barriers can be inferred directly.

It is then important to be able to disentangle transport costs from non-transport related costs, such as artificial barriers established by local governments. Since our survey data also contain direct information on the transport costs for each transaction, we can calculate the weight of transport cost in total trade barriers (TCW) as follows for each transaction:

\[\text{TCW} = \frac{\text{Transport Cost}}{\text{(Trade barriers} \times \text{Transaction volume})} \]

(2)

Our data also allow us to further break down the total transport costs into fixed costs and variable costs. Specifically, fixed costs include the maintenance costs, insurance expense, and some fixed taxes (such as registration costs and road-use fee); variable costs include the expenses on fuel, labor, toll, meals and lodging, and fines.

The tolls and fines are also of particular interest because they may reflect the local protectionism that has been emphasized by the existing studies on trade barriers in China. It is important to note that the tolls and fines are not necessarily fully due to local governments’ intention to protect local market. The tolls may reflect the costs of infrastructure (e.g., maintenance costs). The fines may reflect the social costs of transport (e.g., accidents). In these cases, both tolls and fines should also be considered part of the transport costs.

Estimating the determinants of transport costs

In order to further infer what determine the fuel costs, an important component of transport costs\(^4\), below we proposed a regression model.

\[
\ln(\text{Fuel}_i) = \alpha_0^F + \alpha_1^F \ln(\text{Dist}_i) + \alpha_2^F \frac{\text{Dist}_i}{\text{Time}_i} + Z \beta^F + \gamma_j^F + \epsilon_i^F
\]

(3)

Here \(\text{Fuel}_i\) is the fuel cost for route \(i\). This model decomposes the determinants of fuel costs into four factors: the actual distance of transport, \(\text{Dist}_i\), road quality measured by average transport speed \(\text{Dist}_i / \text{Time}_i\); the fixed effects of the locations of traders, which may capture the effect of unobserved regional characteristics on fuel prices; and other determinants \(Z\), such as the trader’s age, education, gender, traders’ operational details. Different operational details, such as vegetables and aquaculture products, may have different cost structures.

The econometric model for fuel costs provides direct evidence on the importance of time to transport costs. In particular, better road infrastructure may increase transport speed, thus increasing fuel-burning efficiency.

\(^4\) The most important component in the variable transport costs is labor costs. However, the sample size is only 25, and it is too small to conduct an econometric exercises.
Total Variable Costs
Alternatively, we shall also replace the fuel costs in the foregoing models by the total variable transport costs, which also include other costs, such as food and lodging, fines and tolls. This shall give us a gross effect of transport conditions on transport costs:

\[
\ln(TPCost_i) = \alpha_0 + \alpha_1 \ln(Dist_i) + \alpha_2 \frac{Dist_i}{Time_i} + Z \beta + \gamma_j + \epsilon_i
\]

The function of total transport costs are similar with that of fuel function, including distance, road quality, regional effects, and some other demographic variables of the trade.

Sample Selection Bias
In theory, the estimation of the models above may suffer from sample selection bias. This is because what we observe in the data are actual trades, which happen only when traders find transport costs low enough. Hence, some high-trade-costs routes may not be observed. This sample selection may generate estimation biases if some determinants of transport costs are unobserved. This is a major issue in applied econometric analysis (see Chapter 17 of Wooldridge, 2002, for detailed analysis).

One way to address the issue is to apply the Heckman's two-step procedure. In the first step, we would need to estimate a probit model of whether the traders at location i would trade with location j. In particular, we estimate the following model

\[
Trade_{ij} = [Z \varphi + \epsilon_{ij} > 0]
\]

where \([\cdot]\) is an indicator function, and the trade between location i and j can be determined by a vector of exogenous variables, such as the characteristics of the traders and their locations. We then can obtain the inverse Mills ratio from equation (5) which can be included in the regressions of functions of transport costs. If the coefficient of the inverse Mills ratio is significant, it indicates that the selection bias is present.

Empirical findings and discussions
The components of trade barriers
First, we calculate the trade barriers and the share of transport costs in trade barriers (Table 1). In our 224 observations, the average markup rate is about 25.66%, and the profit rate is 7.48%, so that the trade barriers are 18.18%, which is not so large as we thought. Anderson and vanWincoop (2004) report that trade barriers for developed countries fall in a range between 40% and 90%; and Waugh (2010) even reports that the median value of the trade costs for all countries is as high as 192%. Within the trader barriers, only 42% are due to transport costs, and the rest 58% is caused by non-transport trade barriers, such as taxes. It implies that the non-transport trade barriers in China are relatively high.

Comparing the contracted transport with self-transport, we find that traders with contracted transport have slightly higher markup rate and slightly lower profit rate, so that the trade barriers for contracted transport are higher. The difference between the trade barriers might be caused by the higher transport cost for contracted transport. The share of transport costs in trade barriers is 44.50% for contracted transport, while the number is only 35.01% for self-transport. It is plausible that self-transport might internalize some costs, or some opportunity costs are not reported by the traders.

Note that both trader barriers and transport costs are the lowest for traders with mixed transport meanings which use both contracted transport and self-transport. It could be that these traders use portfolios of transport meanings to minimize transport costs and trade barriers.

For self-transport traders, information is available to break down their transport costs into fixed and variable costs. We found that they are about equally sizable (Table 1).

In addition, transport costs might differ for different commodities due to different transport requirements. For instance, Chinese consumers often demand living fish in the market, so that
transport of fish is often very costly. Table 2 demonstrates the trade barriers and weight of transport cost in trade barriers for different commodities which include vegetables, meat, aquaculture products, and eggs. It indicates that the profit rates for the four commodities are quite similar which fall in a range between 4% and 8%. However the markup rate for vegetables is close to 30%, significantly higher than other commodities, as the numbers for meat, aquaculture products and eggs are only 14%, 15% and 9%, respectively. The high markup rate for vegetables mainly results from a high trade barrier, which is as high as 21%, perhaps due to the perishable nature of vegetables, and the feature of less value per unit of bulk.

Surprisingly, Table 2 also indicates the weights of transport cost in trade barriers are quite similar for different commodities, and around 40%.

We also break down the fixed costs into maintenance costs, insurance, taxes, and other fixed costs, which are reported in Table 3. We find that government taxes are the most sizable, accounting for 6419% of fixed transport costs for self-transport traders, or about 30% of total transport costs. The maintenance costs and insurance costs are only about 14.23% and 3.83%, which are much less substantial. Reducing government taxes could significantly lower the fixed transport costs, so to the trade barriers as well.

Table 4 looks at the components of variable transport costs. It is interesting that both all means of transport and truck transport have the similar structures in variable costs. Particularly, labor costs are most sizable in total variable costs, and the share is around 70% either for all means of transport or for truck transport. In other words, the share of labor costs in total transport costs would be over 35%, which eventually is the largest proportion.

The fuel costs and the artificial barriers created by tolls and fines are also substantial, but far less important than labor costs. In the observed samples for all means of transport, the share of fuel costs is 13%, and both the costs for toll and fines are only around 5%. In contrast, for the samples of truck transport, the share of fuel costs is as high as 27%, but the costs for toll and fines are as low as 3% and 1%, respectively.

Determinants of trade barriers

In this section we proceed to estimating the key determinants of transport costs. The econometric models have been shown in Section 2. The estimation results are presented in Table 5, which include the estimations for fuel function, and total variable cost, and each with an ordinary least squares model (OLS), a fixed-effects model (FE) and a Heckman sample selection model (Heckit). Comparing the three models, we find that their results are quite consistent either for the fuel cost function or for the total variable cost function.

The coefficients for the inverse Mills ratio are not statistically significant for both functions, so that there is no significant evidence of sample selection problem in our study. In addition, the F-tests for fixed effects indicate that there is significant regional difference for total variable cost equation, but not for the fuel equation. It makes sense that fuel price are uniformly set by the central government, and the regional difference should be insignificant after controlling other variables. In contrast, the regional difference for other costs, such as labor, could be significant. Hence, the following discussion for fuel function will be based on the OLS estimation, while the discussion for total variable cost function will be based on the fixed-effects models.

Interestingly, the demographic variables, such as gender, education, and age are not statistically significant for transport costs. It does make sense that transport costs are not related to demographic characters, and they are determined by distance, road condition and operation details.

The model of fuel costs

The results of fuel costs function are reported in the column 1, 2and 3 of Table 5. The coefficient of the log of distance is 1.19, close to one, suggesting that the fuel cost is proportional to the transport distance. Moreover, we also find that the coefficient of the variable of average speed -0.019 and statistically significant at 5% level, which suggests that road infrastructure with higher quality would reduce fuel cost. In particular, the speed increase by 1 km per hour now, which can reduce fuel costs by 19% due to an increase in fuel efficiency.

In addition, the operation details are also important for fuel costs. The coefficient for meat transport is 0.078 and statistically significant at 5%, while the coefficients for other commodity dummy variables, such as vegetables, aquaculture products and eggs are not significant. It
implies that meat transport requires more fuels than other products, which might result from the fact that transport of meat products often requires cooling system in order to keep them fresh, and hence more fuels are needed.

Table 3
Fixed transport costs by components

<table>
<thead>
<tr>
<th></th>
<th>Self-Transport</th>
<th>S.D.</th>
<th>Mixed Transport</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Costs</td>
<td>14.23</td>
<td>17.67</td>
<td>9.78</td>
<td>9.50</td>
</tr>
<tr>
<td>Insurance</td>
<td>3.83</td>
<td>5.58</td>
<td>1.95</td>
<td>2.28</td>
</tr>
<tr>
<td>Taxes</td>
<td>64.19</td>
<td>29.65</td>
<td>68.70</td>
<td>27.59</td>
</tr>
<tr>
<td>Other Fixed Costs</td>
<td>17.76</td>
<td>17.58</td>
<td>19.56</td>
<td>19.63</td>
</tr>
<tr>
<td>No. of observations</td>
<td>34</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Source: Agricultural Surrey on rural traders (2004) and authors’ calculation

Table 4
Variable transport costs by components

<table>
<thead>
<tr>
<th></th>
<th>All Means of Transport</th>
<th>S.D.</th>
<th>Truck Transport</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cost</td>
<td>13.41</td>
<td>17.83</td>
<td>27.46</td>
<td>21.29</td>
</tr>
<tr>
<td>Labor Cost</td>
<td>75.56</td>
<td>24.16</td>
<td>69.02</td>
<td>20.30</td>
</tr>
<tr>
<td>Toll</td>
<td>5.63</td>
<td>11.97</td>
<td>2.81</td>
<td>3.10</td>
</tr>
<tr>
<td>Fines</td>
<td>5.32</td>
<td>10.43</td>
<td>0.71</td>
<td>2.36</td>
</tr>
<tr>
<td>Other Costs</td>
<td>0.08</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sample Size</td>
<td>28</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Agricultural Surrey on rural traders (2004) and authors’ calculation

The model of total variable transport costs

We now turn to estimating the model of total variable transport costs. This significantly increases our sample size because the traders tend to be more likely to report the total costs. Moreover, this also allows that to estimate the gross effect of transport conditions on transport costs. Similarly, we include the distance and road quality in the regression. Note that this road quality may not be limited to the channels of fuel, and it may also affect labor, toll, fines, and meals and lodging costs that are also included in the reported transport costs if the distance is given. The results indicate that both distance and road quality respectively are statistically significant at 1% and 5%, implying they are very important for transport costs.

First, the coefficient for logarithm of distance is 0.88, slightly lower than 1, which might result from the scale effects in distance.

Second, the coefficient for the variable of speed is -0.006, which implies that good road quality could significantly decrease the transport costs. Specifically, if the speed increases by 1 km per hour, the total direct transport costs could be reduced by 0.6%. As aforementioned, if the distance is given, bad road quality could significantly increase the transport time, which would increase fuel costs, labor costs, and the loss of agricultural products due to perishment. On the contrary, the results support that traders do benefit from the improvement of infrastructure investment in China.

Different commodities may have different transport costs. Particularly, we find that the variable transport cost for aquaculture products is significantly higher than other products. It might be result from the fact, as aforementioned, most Chinese consumers demand living fish, which can significantly increase the variable costs, due to the loss of fish death. In contrast, the variable
transport cost for eggs is significantly lower, which might be due to the fact that eggs are less perishable than other products.

Third, an F-test however rejects the null hypothesis of no systematic difference in total variable costs across different regions in China. The differences might result from other costs, such as lodging and food, and tolls and fine, rather than fuel and labor costs.

Conclusions with discussion

With unique data set on the traders of agricultural goods in China, this study provides direct evidence on the trade barriers and their determinants within China, and enriched the current literature of trade analysis from an empirical perspective as well. We find that trade barriers in China are sizable, amounting to around 20 percent of the value of trade. About 40 percent of the trade barriers are due to transport-related costs. This may imply that non-transport related costs, such as artificial trade barriers established by government, account for around 60 percent of the trade barriers in China.

Trade barriers differ for different products. Particularly, trade barriers for vegetables are significantly higher than other commodities, which might result from the perishable nature of vegetables and the feature of less value per unit of bulk.

We further decompose transport costs into fixed costs and variable costs, which are equal sizable in total transport cost. Surprisingly, the labor costs are the most import factor in total transport cost. It contributes to about 70 percent of the total variable transport costs, or accounts for more than 35% total transport costs. The second most important factor appears to be the government taxes such as registration fees and road use fees, accounting for more than 60 percent of the fixed transport costs, or around 30 percent of the total transport costs. While road tolls and fines are quite trivial, and add-up of the costs only accounts for 5 percent of the total transport costs.

We further estimated key determinants of transport costs. We find that transport cost increases almost proportionally to transport distances (with a slight scale effect). More importantly, the quality of road approximated by the transport speed is a significant factor of transport costs. Given the distance, if transport speed increases by 1 km per hour, the total transport costs would decrease by 0.7%. This saving in transport costs happens through at least two channels: increasing fuel-burning efficiency and reducing the demand for labor.

Compared with the estimated trade costs in the current literature, such as Anderson and van Wincoop (2004) and Waugh (2010), a trade cost of 20% in this study is very low, which indicates that market friction is fairly small in China. However, it should be pointed out that our study only looks at one link in the long food supply chain.
Table 5
Empirical estimates

<table>
<thead>
<tr>
<th></th>
<th>ln(Fuel)</th>
<th>ln(Total cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS FE Hekit</td>
<td>OLS FE Hekit</td>
</tr>
<tr>
<td>Female (1=Female, 0=male)</td>
<td>0.102 (0.53)</td>
<td>0.161 (0.72)</td>
</tr>
<tr>
<td></td>
<td>0.112 (0.74)</td>
<td>0.023 (0.66)</td>
</tr>
<tr>
<td>Education</td>
<td>-0.059 (0.13)</td>
<td>0.000 (0.01)</td>
</tr>
<tr>
<td></td>
<td>0.000 (0.11)</td>
<td>0.006 (0.09)</td>
</tr>
<tr>
<td>Age</td>
<td>0.003 (0.29)</td>
<td>0.000 (0.03)</td>
</tr>
<tr>
<td></td>
<td>0.000 (0.76)</td>
<td>0.006 (0.14)</td>
</tr>
<tr>
<td>ln(Distance)</td>
<td>1.190 (9.90***)</td>
<td>1.047 (13.49***)</td>
</tr>
<tr>
<td></td>
<td>-0.019 (0.01)</td>
<td>-0.020 (0.07)</td>
</tr>
<tr>
<td>Geometric Time</td>
<td>-0.156 (2.38**)</td>
<td>-0.840 (3.30***)</td>
</tr>
<tr>
<td></td>
<td>-0.160 (3.59***)</td>
<td>-0.241 (2.30***)</td>
</tr>
<tr>
<td>Vegetable</td>
<td>-0.157 (0.76)</td>
<td>0.241 (1.905)</td>
</tr>
<tr>
<td></td>
<td>-0.159 (0.68)</td>
<td>2.080 (1.626)</td>
</tr>
<tr>
<td>Aquaculture Products</td>
<td>0.768 (7.79***)</td>
<td>0.623 (3.63***)</td>
</tr>
<tr>
<td></td>
<td>0.531 (0.68)</td>
<td>1.08 (3.41***)</td>
</tr>
<tr>
<td>Meat</td>
<td>0.678 (2.15**)</td>
<td>0.583 (1.15)</td>
</tr>
<tr>
<td></td>
<td>0.793 (7.79***)</td>
<td>0.620 (1.15)</td>
</tr>
<tr>
<td>Eggs</td>
<td>-0.023 (0.65)</td>
<td>0.230 (0.57)</td>
</tr>
<tr>
<td></td>
<td>-0.333 (1.28)</td>
<td>-0.489 (0.50)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.291 (0.37)</td>
<td>0.290 (0.07)</td>
</tr>
<tr>
<td></td>
<td>-0.041 (0.24)</td>
<td>0.125 (0.47)</td>
</tr>
<tr>
<td>Mills Ratio</td>
<td>0.635 (0.37)</td>
<td>0.79 (0.75)</td>
</tr>
<tr>
<td></td>
<td>-0.566 (0.23)</td>
<td>-0.566 (0.26)</td>
</tr>
<tr>
<td>F-tests for Fixed-Effects</td>
<td>F(6, 55) = 1.55</td>
<td>F(8, 192) = 1.91*</td>
</tr>
<tr>
<td>No. of Obs.</td>
<td>71</td>
<td>210</td>
</tr>
</tbody>
</table>

Source: Agricultural Surrey on rural traders (2004) and authors’ estimation

References

Working Papers

09/01 K.C. Fung, Alicia García-Herrero and Alan Siu: Production Sharing in Latin America and East Asia.

09/02 Alicia García-Herrero, Jacob Gyntelberg and Andrea Tesei: The Asian crisis: what did local stock markets expect?

09/03 Alicia García-Herrero and Santiago Fernández de Lis: The Spanish Approach: Dynamic Provisioning and other Tools.

09/04 Tatiana Alonso: Potencial futuro de la oferta mundial de petróleo: un análisis de las principales fuentes de incertidumbre.

09/05 Tatiana Alonso: Main sources of uncertainty in formulating potential growth scenarios for oil supply.

09/06 Ángel de la Fuente y Rafael Doménech: Convergencia real y envejecimiento: retos y propuestas.

09/08 Alicia García-Herrero, Philip Woolbridge and Doo Yong Yang: Why don’t Asians invest in Asia? The determinants of cross-border portfolio holdings.

09/09 Alicia García-Herrero, Sergio Gavilá and Daniel Santabárbara: What explains the low profitability of Chinese Banks?

09/10 J.E. Boscá, R. Doménech and J. Ferri: Tax Reforms and Labour-market Performance: An Evaluation for Spain using REMS.

09/12 J.E. Boscá, R. Doménech and J. Ferri: Search, Nash Bargaining and Rule of Thumb Consumers.

09/13 Angel Melguizo, Angel Muñoz, David Tuesta y Joaquín Vial: Reforma de las pensiones y política fiscal: algunas lecciones de Chile.

09/15 Angel Melguizo, Angel Muñoz, David Tuesta and Joaquín Vial: Pension reform and fiscal policy: some lessons from Chile.

09/16 Alicia García-Herrero and Tuuli Koivu: China’s Exchange Rate Policy and Asian Trade.

09/18 Alicia García Herrero and Daniel Santabárbara García: Una valoración de la reforma del sistema bancario de China.

10/01 Carlos Herrera: Rentabilidad de largo plazo y tasas de reemplazo en el Sistema de Pensiones de México.

10/05 Soledad Hormazabal D.: Gobierno Corporativo y Administradoras de Fondos de Pensiones (AFP). El caso chileno.

10/07 Rafael Doménech y Juan Ramón García: ¿Cómo Conseguir que Crezcan la Productividad y el Empleo, y Disminuya el Desequilibrio Exterior?

10/08 Markus Brückner and Antonio Ciccone: International Commodity Prices, Growth, and the Outbreak of Civil War in Sub-Saharan Africa.

10/09 Antonio Ciccone and Marek Jarocinski: Determinants of Economic Growth: Will Data Tell?

10/10 Antonio Ciccone and Markus Brückner: Rain and the Democratic Window of Opportunity.

10/11 Eduardo Fuentes: Incentivando la cotización voluntaria de los trabajadores independientes a los fondos de pensiones: una aproximación a partir del caso de Chile.

10/12 Eduardo Fuentes: Creating incentives for voluntary contributions to pension funds by independent workers: A primer based on the case of Chile.

10/16 Soledad Zignago: Determinantes del comercio internacional en tiempos de crisis.

10/17 Angel de la Fuente and José Emilio Boscá: EU cohesion aid to Spain: a data set Part I: 2000-06 planning period.

10/18 Angel de la Fuente: Infrastructures and productivity: an updated survey.

10/19 Jasmina Bjeletic, Carlos Herrera, David Tuesta y Javier Alonso: Simulaciones de rentabilidades en la industria de pensiones privadas en el Perú.

10/21 Máximo Camacho and Rafael Doménech: MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting.

10/22 Enestor Dos Santos and Soledad Zignago: The impact of the emergence of China on Brazilian international trade.

10/23 Javier Alonso, Jasmina Bjeletic y David Tuesta: Elementos que justifican una comisión por saldo administrado en la industria de pensiones privadas en el Perú.

10/24 Javier Alonso, Jasmina Bjeletic y David Tuesta: Reasons to justify fees on assets in the Peruvian private pension sector.

10/26 Carlos A. Herrera: Long-term returns and replacement rates in Mexico’s pension system.

10/27 Soledad Hormazábal: Multifondos en el Sistema de Pensiones en Chile.
10/28 Soledad Hormazábal: Multi-funds in the Chilean Pension System.

10/29 Javier Alonso, Carlos Herrera, María Claudia Llanes y David Tuesta: Simulations of long-term returns and replacement rates in the Colombian pension system.

10/30 Javier Alonso, Carlos Herrera, María Claudia Llanes and David Tuesta: Simulaciones de rentabilidades de largo plazo y tasas de reemplazo en el sistema de pensiones de Colombia.

11/01 Alicia García Herrero: Hong Kong as international banking center: present and future.

11/03 Angel de la Fuente: Human capital and productivity

11/04 Adolfo Albo y Juan Luis Ordaz Díaz: Los determinantes de la migración y factores de la expulsión de la migración mexicana hacia el exterior, evidencia municipal.

11/05 Adolfo Albo y Juan Luis Ordaz Díaz: La Migración Mexicana hacia los Estados Unidos: Una breve radiografía.

11/06 Adolfo Albo y Juan Luis Ordaz Díaz: El Impacto de las Redes Sociales en los Ingresos de los Mexicanos en EEUU.

11/07 María Abascal, Luis Carranza, Mayte Ledo y Arnoldo López Marmolejo: Impacto de la Regulación Financiera sobre Países Emergentes.

11/09 Angel de la Fuente y Rafael Doménech: El impacto sobre el gasto de la reforma de las pensiones: una primera estimación.

11/10 Juan Yermo: El papel ineludible de las pensiones privadas en los sistemas de ingresos de jubilación.

11/11 Juan Yermo: The unavoidable role of private pensions in retirement income systems.

11/12 Angel de la Fuente and Rafael Doménech: The impact of Spanish pension reform on expenditure: A quick estimate.

11/14 David Tuesta: Una revisión de los sistemas de pensiones en Latinoamérica.

11/16 Adolfo Albo y Juan Luis Ordaz Díaz: La Migración en Arizona y los efectos de la Nueva Ley “SB-1070”.

11/17 Adolfo Albo y Juan Luis Ordaz Díaz: Los efectos económicos de la Migración en el país de destino. Los beneficios de la migración mexicana para Estados Unidos.

11/19 Angel de la Fuente y José E. Bosca: Gasto educativo por regiones y niveles en 2005.

11/20 Máximo Camacho and Agustín García Serrador: The Euro-Sting revisited: PMI versus ESI to obtain euro area GDP forecasts.

11/22 Eduardo Fuentes Corripio: El riesgo de longevidad en Latinoamérica.

11/25 Adolfo Albo y Juan Luis Ordaz Díaz: Migración mexicana altamente calificadaen EEUU y Transferencia de México a Estados Unidos a través del gasto en la educación de los migrantes.
11/26 **Adolfo Albo y Juan Luis Ordaz Díaz:** Highly qualified Mexican immigrants in the U.S. and transfer of resources to the U.S. through the education costs of Mexican migrants.

11/27 **Adolfo Albo y Juan Luis Ordaz Díaz:** Migración y Cambio Climático. El caso mexicano.

11/28 **Adolfo Albo y Juan Luis Ordaz Díaz:** Migration and Climate Change: The Mexican Case.

11/29 **Ángel de la Fuente y María Gundín:** Indicadores de desempeño educativo regional: metodología y resultados para los cursos 2005-06 a 2007-08.

11/30 **Juan Ramón García:** Desempleo juvenil en España: causas y soluciones.

11/31 **Juan Ramón García:** Youth unemployment in Spain: causes and solutions.

11/32 **Mónica Correa-López and Beatriz de Blas:** International transmission of medium-term technology cycles: Evidence from Spain as a recipient country.

11/33 **Javier Alonso, Miguel Angel Caballero, Li Hui, María Claudia Llanes, David Tuesta, Yuwei Hu and Yun Cao:** Potential outcomes of private pension developments in China.

11/34 **Javier Alonso, Miguel Angel Caballero, Li Hui, María Claudia Llanes, David Tuesta, Yuwei Hu and Yun Cao:** Posibles consecuencias de la evolución de las pensiones privadas en China.

11/35 **Enestor Dos Santos:** Brazil on the global finance map: an analysis of the development of the Brazilian capital market.

11/36 **Enestor Dos Santos, Diego Torres and David Tuesta:** Una revisión de los avances en la inversión en infraestructura en Latinoamérica y el papel de los fondos de pensiones privados.

11/37 **Enestor Dos Santos, Diego Torres and David Tuesta:** A review of recent infrastructure investment in Latin America and the role of private pension funds.

11/38 **Zhigang Li and Minqin Wu:** Estimating the Incidences of the Recent Pension Reform in China: Evidence from 100,000 Manufacturers.

12/01 **Marcos Dal Bianco, Máximo Camacho and Gabriel Pérez-Quiros:** Short-run forecasting of the euro-dollar exchange rate with economic fundamentals.

12/02 **Guoying Deng, Zhigang Li and Guangliang Ye:** Mortgage Rate and the Choice of Mortgage Length. Quasi-experimental Evidence from Chinese Transaction-level Data.

12/03 **George Chouliarakis and Mónica Correa-López:** A Fair Wage Model of Unemployment with Inertia in Fairness Perceptions.

12/04 **Nathalie Aminian, K.C. Fung, Alicia García-Herrero, Francis NG:** Trade in services: East Asian and Latin American Experiences.

12/05 **Javier Alonso, Miguel Angel Caballero, Li Hui, María Claudia Llanes, David Tuesta, Yuwei Hu and Yun Cao:** Potential outcomes of private pension developments in China (Chinese Version).

12/06 **Alicia García-Herrero, Yingyi Tsai and Xia Le:** RMB Internationalization: What is in for Taiwan?

12/07 **K.C. Fung, Alicia García-Herrero, Mario Nigrinis Ospina:** Latin American Commodity Export Concentration: Is There a China Effect?
12/08 Matt Ferchen, Alicia Garcia-Herrero and Mario Nigrinis: Evaluating Latin America’s Commodity Dependence on China.