The urbanization process in Europe took place rapidly since 1950, but in the 90s it moderated its pace and it will likely be slower during the next ten years.

The European urbanization phenomenon is associated with higher economic, technological and digital development.

There’s still an important gap between Western and the Emerging Europe. Responsive and accountable policies are needed to support sustainable development.

European cities have become important hubs for education, innovation and knowledge-based economies. Digitalization has been fundamental to increase competitiveness.

Differences between Western and Eastern Europe also hold at regional levels. Smart cities-oriented policies will foster technological and sustainable development.
Almost three quarters of the European population lived in urban areas in 2015

And it could rise to just over 80 % by 2050

Source: BBVA Research and UN
Note: See the annex for further information about the methodology
The rapid pace of urbanization in Eastern Europe until 1990 reduced the gap with Western countries.

SHARE OF URBAN AND RURAL POPULATION IN EUROPE (1950-2050)

(% total population)

EASTERN EUROPE

- **Western Europe**

Source: BBVA Research and UN

Note: See the annex for further information about the methodology.
Urbanization has shown a positive relation with income...

Source: BBVA Research, World Bank and UN
... labor productivity...

Source: BBVA Research, World Bank and UN
... as well as with technological adoption and competitiveness levels

LEVEL OF URBANIZATION AND TECHNOLOGICAL ADOPTION INDEX IN EUROPE IN 2015
(scale ranges from 1 to 7, best)

LEVEL OF URBANIZATION AND GLOBAL COMPETITIVENESS INDEX IN EUROPE IN 2015
(scale ranges from 1 to 7, best)

Source: BBVA Research, Weforum
There’s a significant technological gap between the advanced and the developing Europe

Source: BBVA Research, Weforum
Higher levels of urbanization also correlates positively with ICT developments…

LEVEL OF URBANIZATION AND INTERNET USE IN EUROPE IN 2015

ICT DEVELOPMENTS IN EUROPE IN 2005-2016*

* Estimate
Source: BBVA Research, ITU World Telecommunication /ICT Indicators database
... and with the quality of infrastructures and workforce

GLOBAL QUALITY OF INFRASTRUCTURES IN 2015
(scale ranges from 1 to 7, best)

EDUCATION AND TRAINING IN 2015
(scale ranges from 1 to 7, best)

TRANSPORT INFRASTRUCTURE IN 2015
(scale ranges from 1 to 7, best)

Source: BBVA Research, Weforum
There’s also room for improvement in policy making to reduce the gap between the advanced and the emerging Europe.

Infrastructure and Education Indices Across European Countries, 2010-2015

(scale ranges from 1 to 7, best)

- Advanced Europe
- Emerging Europe
- France
- United Kingdom
- Spain
- Estonia
- Poland
- Romania

- Quality of overall infrastructure
- Higher education and training
- Transport infrastructure
The role of cities
Evolution of the urban landscape: increasing role of cities

THE WORLD’S CITIES BY SIZE CLASS OF URBAN SETTLEMENT

1990

2030

City population:
- 10 mill or more
- 5 to 10 mill
- 1 to 5 mill
- 500000 to 1 mill

Source: BBVA Research, UN
Note: See the annex for further information about the methodology
Higher urban agglomerations are also positively associated with income growth and labor productivity.
Urban areas became major hubs for education, innovation and knowledge-based economies.

Cities are at the forefront of technological and digital developments.

- High-skilled workforce
- Knowledge intensive jobs
- High technology sectors
- Innovation and R&D
- High quality of infrastructure
- Digital infrastructure
- High use of internet
There are still important heterogeneities in education attainments across European cities.
… as well as in innovation and the quality of infrastructures

RESEARCH AND DEVELOPMENT INVESTMENT IN THE EUROPEAN CITIES IN 2015

Total R&D expenditure (%GDP)

Number of High-tech patent applications

PUBLIC TRANSPORT SATISFACTION IN THE EUROPEAN CITIES IN 2015

Proportion of people who are satisfied with public transport in their city
Differences in the digitalization variables are also significant at regional levels.
Successful sustainable urbanization requires responsive and accountable governments

Fostering smart cities oriented policies will be key to attain urban sustainability
ANNEX
Urban population projections

The estimation and projection of the urban population by the United Nations is based on observed changes in the proportion of the population living in urban areas by country for the period 1950-2050 in single-year intervals. It relies on the data produced by national sources.

Calculation of the urban proportion during the estimation period involves interpolation between recorded figures and extrapolation back to 1 July 1950 when the earliest recorded figures referred to a later date. The used estimation method projects the most recently observed urban-rural growth difference by assuming that the proportion urban follows a logistic path that attains a maximum growth rate when the proportion urban reaches 50% and whose asymptotic value is 100%. Thus, the hypothetical urban-rural growth difference ($hrur_t$), was obtained by regressing the urban-rural growth difference during any given time interval on the percentage urban at the mid-point of the corresponding time interval, for the 148 countries with 2 million or more inhabitants in 2013. The resulting regression equation estimated on 1068 observations is as follows:

$$n_{hrur_t} = 0.030588 - 0.020508 \times PU_{(t+\frac{n}{2})}$$

Where $PU_{(t+\frac{n}{2})}$ is the proportion urban for the mid-point of the intercensal period between time t and $t+n$.

The obtained urban ratios were applied to the estimates and projections of the total national population of each country derived from World Population Prospects: The 2012 Revision, so as to obtain the corresponding urban population for 1950 to 2050.

Estimates and projections of the population of cities with an estimated population of 300,000 inhabitants or more in 2014 were also calculated for the period 1950-2030. The procedure is similar to the one described above for the proportion urban. However, in this case, instead of using the urban-rural growth difference, the interpolation or extrapolation is based on the difference between the growth rate of a city and the growth rate of the population of the rest of the country. The method used for projecting city populations is also similar to that used for urban populations. The city growth rate over the most recent intercensal period is modified over the projection period so that it approaches linearly an expected value that is based on the city population and on the growth rate of the urban population as a whole. The difference between the rate of population growth for the city and that for the total urban population (rcu_t) was estimated using the following regression equation, which was fitted to the data relative to 5305 cities located in the 232 countries or areas analysed (28931 observations):

$$n_{rcu_t} = 0.0547143 - 0.003383 \times ln(C_t) - 0.3086313 \times n_{u_t} - 0.001116 \times (ln(C_t) \times n_{u_t})$$

Where C_t is the population of the city at time t, n_{u_t} is the growth rate of total urban population, and $(ln(C_t) \times n_{u_t})$ is the interaction term between these two variables.
Disclaimer

This document has been prepared by BBVA Research Department, it is provided for information purposes only and expresses data, opinions or estimations regarding the date of issue of the report, prepared by BBVA or obtained from or based on sources we consider to be reliable, and have not been independently verified by BBVA. Therefore, BBVA offers no warranty, either express or implicit, regarding its accuracy, integrity or correctness.

Estimations this document may contain have been undertaken according to generally accepted methodologies and should be considered as forecasts or projections. Results obtained in the past, either positive or negative, are no guarantee of future performance.

This document and its contents are subject to changes without prior notice depending on variables such as the economic context or market fluctuations. BBVA is not responsible for updating these contents or for giving notice of such changes. BBVA accepts no liability for any loss, direct or indirect, that may result from the use of this document or its contents.

This document and its contents do not constitute an offer, invitation or solicitation to purchase, divest or enter into any interest in financial assets or instruments. Neither shall this document nor its contents form the basis of any contract, commitment or decision of any kind.

In regard to investment in financial assets related to economic variables this document may cover, readers should be aware that under no circumstances should they base their investment decisions in the information contained in this document. Those persons or entities offering investment products to these potential investors are legally required to provide the information needed for them to take an appropriate investment decision.

The content of this document is protected by intellectual property laws. It is forbidden its reproduction, transformation, distribution, public communication, making available, extraction, reuse, forwarding or use of any nature by any means or process, except in cases where it is legally permitted or expressly authorized by BBVA.
This report has been produced by BBVA Research Team

Chief Economist,
Asia, MENA & Geostrategy
Álvaro Ortiz Vidal-Abarca
alvaro.ortiz@bbva.com

Lead Economist,
Macroeconomic Scenarios
Miguel Jiménez
mjimenezg@bbva.com

Tomasa Rodrigo
tomasa.rodrigo@bbva.com

Manuel Cabezas
manuel.cabezas.pedrayes@bbva.com