APPENDIX: The input-output model

Out input-output model can be represented by the following linear equations:

$$
\left[\begin{array}{c}
x_{1} \tag{1}\\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
z_{11} & \cdots & z_{1 n} \\
\vdots & & \vdots \\
z_{n 1} & \cdots & z_{n n}
\end{array}\right]\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]+\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

where x_{i} is the gross output of sector $\mathrm{i}, z_{i j}$ is the intermediate input from sector i to sector j , and f_{i} is the total final demand for sector i's product. Equation (1) is equal to the following in matrix notation:

$$
\begin{equation*}
X_{n \times 1}=Z_{n \times n} i_{n \times 1}+F_{n \times 1} \tag{2}
\end{equation*}
$$

The direct input coefficient $a_{i j}$, which measures the amount of intermediate input from sector i used to produce one unit of output in sector j with only direct input demand considered, is calculated by dividing the intermediate input from sector i to sector j by the total output of sector j :

$$
\begin{equation*}
a_{i j}=z_{i j} / x_{i j} \tag{3}
\end{equation*}
$$

By substituting (3) into (1) or (2), the input-output model can be rearranged as:

$$
\left[\begin{array}{c}
x_{1} \tag{4}\\
\vdots \\
x_{n}
\end{array}\right]=\left(\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]-\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

which is equivalent to:

$$
\begin{equation*}
X_{n \times 1}=\left(I_{n \times n}-A_{n \times n}\right)^{-1} F_{n \times 1} \tag{5}
\end{equation*}
$$

where $\left(I_{n \times n}-A_{n \times n}\right)^{-1}$ is known as Leontief Inverse matrix.
Then, the total input coefficient that describes the amount of output from sector i used as intermediate input to meet one unit increase in the final demand of sector j is calculated as:

$$
\begin{equation*}
B_{n \times n}=\left(I_{n \times n}-A_{n \times n}\right)^{-1}-I_{n \times n} \tag{6}
\end{equation*}
$$

We assume the high tech sector's linkage with other sectors is eliminated from the input-output table, that means, we set $a_{i 1}$ and $a_{1 j}$ at 0 in the A matrix in equation (4) for all i and j and calculate the new output level for all sectors.

$$
\left[\begin{array}{c}
x_{1^{*}} \tag{7}\\
\vdots \\
x_{n^{*}}
\end{array}\right]=\left(\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]-\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & a_{22} & \cdots & a_{2 n} \\
0 & \vdots & \ddots & \vdots \\
0 & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\right)^{-1}+\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

