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Network Topology of the Argentine Interbank Money 

Market  
 
Federico D. Fortea 

Abstract 

This paper provides the first empirical network analysis of the Argentine interbank money market, commonly known 

as call market, based on data from the Central Bank of Argentina (BCRA). Its main topological features are described 

applying graph theory, focusing on the unsecured overnight loans settled from 2003 to 2017. The network, where 

banks are the nodes and the operations between them represent the links, exhibits low density, as is usual in financial 

networks, and a higher reciprocity than comparable random graphs. It displays a short average distance and its 

clustering coefficient remains above that of a random network of equal size. Both indicators are in line with those 

reported for other interbank networks around the world. Furthermore, the network is prominently disassortative. 

Different node centrality measures are computed. It is found that a higher centrality enables a node to settle more 

convenient bilateral interest rates compared with the average market rate, identifying a statistical and economically 

significant effect by means of a regression analysis. The degree distributions fit better to a Lognormal distribution 

than to a Poisson or a Power Law. These results constitute a relevant input for systemic risk assessment and provide 

solid empirical foundations for future theoretical modelling and shock simulations. 
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1. Introduction 

Financial entities exhibit a high degree of interdependence. They forge interlinkages via both sides of their balance 

sheets, which are essential for efficient financial intermediation. The financial crises of the nineties and, 

fundamentally, the 2007-09 global turmoil underscored the necessity of a more rigorous comprehension of the 

systemic risks associated with these interconnections among banks. Additionally, those events highlighted the 

central role played by interbank money markets for a correct functioning of financial systems and for the 

effectiveness of monetary policies. 

In this context, the network analysis and graph theory provide an insightful methodology to elucidate both direct 

and indirect interrelationships that are continuously built between the multiple agents of financial systems. This 

approach allows us to better understand phenomena like financial contagion, network externalities, cascade 

failures, etc., which have been highly emphasized by recent literature specialized in financial stability (Bougheas & 

Kirman, 2014). 

This paper examines the topological structure of the Argentine unsecured interbank money market, commonly 

known as call market, from the vantage perspective of network theory. Banks conduct the management of a portion 

of their short-term liquidity positions through this market. The average interest rate settled, known as call rate, 

embodies a fundamental reference of the “cost of money” in Argentina. This short-term rate is a key benchmark for 

the determination of other longer-term rates in the economy. For this reason, the call market represents one of the 

most direct transmission channels at disposal of the Central Bank of Argentina (BCRA) to implement its monetary 

policy. It is one of the main markets where the monetary authority exerts substantial influence and it is crucial for 

defining the monetary conditions of the whole economy, such as the interest rates levels and the evolution of 

monetary aggregates. Hence the importance of examining the structural features of the network of loans that arise 

from this market, in order to assess its stability and systemic risks.  

Thus, the call market is represented as a network, where financial institutions are nodes and the overnight loans 

among them are links. The aim of this paper is to describe the structure of this network, from January 1st, 2003 to 

December 31st, 2017. Its main topological measures are analyzed to investigate if it shows similarities with stylized 

network models. This task enables us to draw conclusions, for instance, about its resilience to different types of 

disruptive events. 

This document provides the first comprehensive network analysis of the Argentine interbank market. This line of 

empirical research has been growing extensively since the early 2000s, along with the development of 

computational technologies and a larger availability of data sets suitable for applying these methods and 

techniques. Similar studies were carried out on the money market networks of several countries, such as Italy (De 

Masi, Iori, & Caldarelli, 2006; Iori et al., 2008), U.S.A. (Bech & Atalay, 2008), or Switzerland (Schumacher, 2017), 

just to mention a couple of examples. A detailed Table displayed in the Appendix summarizes the main topological 

measures of other comparable interbank networks analyzed in the world using an analogous approach. 

The time span of 15 years addressed in this paper for Argentina is one of the most extensive intervals examined so 

far, when compared with the existing empirical studies on financial networks. As a strategy to deal with such a long 

time period, and in pursuit of more clarity, we subdivided it into six different stages. This allows a better description 

of the variability experienced by the network structure throughout these years, which, to some extent, tended to 

move together with the macroeconomic volatility of Argentina’s economy. 

The paper is organized as follows. The next section explains the main characteristics of the Argentine call market, 

the different monetary policy instruments and minimum liquidity requirements imposed by the BCRA, which impact 

directly on money markets (Subsection 2.1 details the different stages in which the time period studied is 
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analytically subdivided). Section 3 briefly reviews the main concepts of network theory applied in the paper and the 

empirical literature on financial networks. Section 4 describes the database used. In Section 5, the methodological 

framework is thoroughly explained. The results are outlined in Section 6. Section 7 presents an econometric 

regression aimed at quantifying the effects derived from node centrality on the banks’ capability for negotiating a 

more convenient interest rate in their individual transactions in the call market. Finally, Section 8 lists some 

concluding remarks, policy implications and lines of research for future work. 

2. The Argentine interbank money market 

The call market is the Argentine traditional interbank market in which banks negotiate their liquidity positions with 

each other. The daily weighted average interest rate of these transactions represents one of the most relevant 

short-term rates of the economy, as it is an essential reference for determining the other interest rates of the 

domestic financial system.  

The loans in this market are unsecured and are agreed between entities by telephone trading. They define 

bilaterally the interest rate of the transaction. Only institutions authorized by the BCRA can operate in this market. 

The vast majority of the loans are overnight, although a few longer-term transactions also take place. Financial 

institutions make a risk assessment of each possible counterparty and then define specific credit lines for each one 

(mainly, they determine the limit amount of money to be granted). Hence, when an entity needs liquid funds, it 

resorts in the first place to those banks with which it has credit lines available. This gives rise to repeated 

interactions between pairs of agents in the market. Network analysis is an approach that, precisely, allows for a 

comprehensive examination of these relationships that emerge along time and helps us to elucidate the structure of 

interdependencies that arises from the liquidity trail within the interbank markets. 

The bilateral transactions are compensated through the real-time gross settlement system called “MEP”1. The 

transfers of funds are not subjected to settlement risks because the monetary authority verifies, before the 

settlement of each loan, the existence of the corresponding funds in each account involved. 

In Argentina, there is another complementary market in which the financial institutions can negotiate their liquidity 

positions, known as “REPO market”. In contrast, this is a secured market and transactions are conducted through 

an electronic platform. This fact makes it more transparent compared with the call market, since all the participants 

are enabled to see the bids and offers of the rest. Nevertheless, to operate in the REPO market it is mandatory to 

fulfill several costly conditions, referred to the volume of assets and equity of the bank (among others), that are 

often impossible to meet by a significant number of entities2. This sort of barriers to entry explain, at least partially, 

the still substantial role played by the call market in the local financial system. Unfortunately, the necessary 

information to analyze the REPO market is not available yet, so this study will focus only on the call market. 

Due to the key role of the call rate as a benchmark for other interest rates in the economy, the BCRA has used 

several instruments to influence its behavior. Since 2002 (in a context of a public debt default), the monetary 

authority started to issue its own short- and middle-term securities, called LEBAC and NOBAC3. These securities 

were designed to absorb or provide liquidity from/to the market, affecting therefore the interest rates and monetary 

conditions of the economy. Additionally, since 2004, the BCRA began to operate actively in the REPO market, in 

 
1: “MEP” stands for “Medio Electrónico de Pagos”. It is the Real-Time Gross Settlement (RTGS) system administered by the BCRA, developed 

in 1997. 

2: For example, in December 2017 only 58 financial entities were allowed to operate in the REPO market, out of a total of 77. 

3: LEBACs were first issued on 13th March 2002 (by Comunicación “B” 7155 of the BCRA), and NOBACs on 2nd December 2003 (by 

Comunicación “B” 8064). 
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order to add complementary instruments to influence the liquidity conditions of the banks. A Central Bank’s repo is 

a secured loan of liquid funds to a financial institution, while a reverse repo is the opposite transaction (a sort of 

“secured deposit” that banks make at the Central Bank). Usually, these loans have a maturity of 1 or 7 days.  

In brief, since 2002 the BCRA has affected the liquidity conditions of the economy using mainly LEBAC, NOBAC 

and repos, trying to align the short-term interest rates with its policy objectives. Figure 1 shows the evolution of the 

call rate during these years, jointly with the interest rates of the BCRA’s most relevant monetary policy instruments. 

Figure 1. Call rate and interest rates of monetary policy instruments (annual %) 

 
Source: BCRA. *Note: The Figure includes only the interest rates of the LEBACs with the shortest duration in each moment, provided that they are shorter than 

105 days. Longer-term LEBACs are less relevant to explain the behavior of the call rate. 

2.1. Macroeconomic context 

Money markets in Argentina have faced wide fluctuations during the years under analysis, along with the general 

macroeconomic volatility experienced by the country. For that reason, the time period studied in this paper is 

analytically subdivided into six different stages, defined according to the development of exogenous factors which 

affected crucially the interbank network in these years. This approach is useful to detect similarities, breaks and 

continuities in the evolution of its structural features over time. 

The first stage comprises the lapse before the public debt restructuring, more precisely the months between 

January 2003 and June 2005. The economy was starting to recover from the deep crisis of 2001 and the financial 

system was facing many restrictions for its normal functioning, not only because of the widespread bank runs 

suffered the previous years, but also because of the sovereign debt default, which continually hindered local 

operations of many international financial entities. Within this first stage, the year 2003 is notably different from 

2004, for two main reasons. In general terms, the economic situation of Argentina was considerably healthier 

during the latter, but the other relevant factor, more specific to the topics here analyzed, was that in 2004 the 

REPO market was established, which provided additional tools for managing liquidity to a still weakened domestic 

financial system. 
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Stage 2 is defined between July 2005 and December 2007, a period in which the economy was buoyant, after the 

debt restructuring and the surge of commodity prices (Figure 2). Then, Stage 3 is characterized by the outbreak of 

the global financial crisis in 2008 and its subsequent impact on Argentina, so it is delimited by the months between 

January 2008 and February 2010. During 2008 the economic activity started to decline, but the main impacts of the 

crisis were witnessed in the first half of 2009. It was not until the second half of that year that the economy began to 

rebound. The fourth stage is signaled by the marked recovery from the crisis, characterized by a strengthened 

economic activity together with the worsening of both fiscal and external deficits (“twin deficits”), so it is defined 

between March 2010 and October 2011. 

By the end of October 2011, the government established harsh FX controls, introducing radical changes in 

regulatory frameworks, especially of the financial system. Capital mobility was strongly restricted and 

simultaneously many regulations were imposed on banks’ interest rates. Gross Domestic Product (GDP) has 

stagnated since then, giving rise to a period of recurrent macroeconomic fluctuations, without the presence of a 

growing medium-term trend. The fifth stage is placed during these years, between November 2011 and November 

2015. As a consequence of the aforementioned regulatory changes, the call rate’s volatility exacerbated during that 

period (see Figure 1). 

Figure 2. Argentina Monthly Economic Activity Estimator* -EMAE- (2004=100) 

 
Source: INDEC. *Note: Seasonally adjusted index, 2004=100. The data of the year 2003 arise from a splice with the 1993 index 

Since December 2015 until the end of the period covered in this paper, FX controls were completely relaxed and 

the regulations on active and passive interest rates were also liberalized. These last two years are included in the 

sixth stage. This lapse is characterized by the establishment of an Inflation Targeting regime, where the BCRA 

used a monetary policy interest rate as its main instrument to manage the monetary conditions of the economy. In 

this context, the call rate reduced drastically its volatility and progressively resumed a more similar behavior to the 

one displayed before 2012. 
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Table 1. Analytical time stages 

 
Source: INDEC. *Note: Seasonally adjusted index, 2004=100. The data of the year 2003 arise from a splice with the 1993 index 

The number of financial entities decreased almost monotonically during the years under analysis. Starting from a 

total of 100 in January 2003, only 77 were active in December 2017 (Figure 3). We employ a usual classification in 

the domestic financial system to study the dynamics of different types of banks in the network. It divides them into 

four subgroups, according to the owner of the institution: State-Owned Banks (SOBs), Domestic Private Banks 

(DPBs), Subsidiaries of Foreign Banks (SFBs) and Non-Bank Financial Institutions (NBFIs). This classification, 

based on the structure and ownership of the equity of the institutions, is also useful as a proxy for the specific type 

of financial businesses in which each entity is specialized. 

Figure 3. Number of entities in the financial system, by type 

 
Source: BCRA 

The decrease in the number of entities is verified for all the subgroups. SFBs were the group that declined the 

most, going from 28 entities in 2003 to 16 in 2017. NBFIs also experienced a notorious reduction (from 22 to 15). 

Meanwhile, DPBs and SOBs showed a more stable evolution, given that the former group only fell from a total of 

37 to 33 banks, and the latter remained between 12 and 13 entities during the whole period. Some mergers, entries 

and exits of players took place during the 15-year period studied (these events cannot be fully visualized in Figure 

3), but the description of those detailed facts is beyond the scope of this paper. 

Stage Date Main Events

1 January 2003 - June 2005 Debt default. Beginnings of economic recovery.

2 July 2005 - December 2007 Debt Restructuring. Economic dynamism.

3 January 2008 - February 2010 Global financial crisis.

4 March 2010 - October 2011 Macroeconomic recovery. Twin deficits widening.

5 November 2011 - November 2015 FX-market restrictions. Interest rate controls.

6 December 2015 - December 2017 FX-market and financial liberalization. Inflation Targeting Regime.
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2.2. Minimum liquidity reserves 

The minimum liquidity requirements imposed by the BCRA affect crucially the interbank money market, both 

directly and indirectly. In Argentina, during the period under analysis, they were defined according to the 

contemporary deposits of each entity, with different requirement coefficients depending on their maturity. Liquidity 

reserves are computed as the monthly average amount of money deposited by the banks in their Current Accounts 

(CA) at the BCRA. From 2003 to 2017, these requirements averaged 14% of total deposits, varying between 11% 

and 17% (taking into consideration all kinds of domestic currency deposits together). 

At the end of each month, the monthly average of banks’ current account balances at the BCRA must exceed 

these minimum levels to avoid financial penalties. Additionally, since 1997, a daily liquidity minimum has also been 

required, defined as a proportion of the requirement of the previous month (most of the time it was 50%), which 

entities must comply with at the end of each day. 

The liquidity requirements cause substantial impact on the dynamics of interbank markets, since the banks tend 

precisely to resort to these markets to adjust their liquidity excesses or shortages, always considering the 

constraints imposed by the monetary authority. 

3. Network theory and empirical interbank markets 

The 2008 global financial crisis demonstrated the huge social costs and externalities that can arise from a systemic 

failure. For this reason, during the last decade, academic researchers as well as policy-makers have devoted a 

good deal of attention to issues associated with the stability and vulnerability of financial systems taking account of 

its interconnectedness (FSB-IMF-BIS, 2009). In this context, network theory is an advantageous framework to 

address comprehensively the complex interconnections among financial institutions (Haldane, 2009). 

There is no clear consensus on whether a completely interconnected financial network reduces contagion and 

domino effects (Allen & Gale, 2000; Freixas, Parigi, & Rochet, 2000) or fuels them (Battiston et al., 2012). 

Interconnectedness among banks improves risk diversification, but at the same time it makes them more prone to 

contagion. In any case, from a financial stability perspective, there is broad agreement on the idea that banks 

should neither be too-big-to-fail nor too-interconnected-to-fail (Hüser, 2015), as these types of institutions entail a 

potentially dangerous source of vulnerability to the whole system. 

Section 3.1 reviews the main theoretical and methodological concepts of network theory applied in this paper. 

Section 3.2 compiles the empirical studies which examined the topological features of real interbank networks over 

the world with an analogous approach. 

3.1. Network analysis and graph theory 

Literature based on network theory has been growing exponentially for many years, both in theoretical and 

empirical terms. It was enriched by contributions from multiple sciences and disciplines, from sociology and 

psychology, to mathematics and physics (Granovetter, 1973; Lozares, 1996; Wasserman & Faust, 1994).  

Specifically, a network (or graph) consists of a set of agents, called “nodes” (or “vertices”), that establish different 

kinds of relationships among them, known as “edges” (or “arcs”). Network analysis allows us to deal with complex 
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structures of edges and nodes in a comprehensive way, that would otherwise be extremely difficult to approach 

analytically. 

Some of the most prominent stylized network structures in theoretical literature can be understood and classified 

according to three main concepts (Albert & Barabási, 2002). The first one is the distance between every pair of 

nodes. It is defined as the number of edges along the shortest path connecting them. The second concept is the 

clustering coefficient. It indicates the probability that two nodes (both connected to a third vertex) have a link 

between themselves. In other words, it quantifies the density of triangles in the graph. The third element is the 

degree distribution of the graph. The “degree” of a node reflects its number of edges, and, in fact, it is unusual that 

all the nodes of a network have the same degree. The degree distribution of the different nodes in a network can 

be characterized by a distribution function, 𝑃(𝑘), which gives the probability that a randomly selected node has 

exactly 𝑘 edges. 

Graph theory was largely focused on regular networks until the 1950’s. The general model was developed by the 

German physicist Ernst Ising (1925) and it was based on a fixed number of nodes connected to the x nearer 

neighbors, where x was in general a fixed number equal for all the agents in the graph. But since the 1950’s, it has 

become more frequent to deal with big networks with no apparent behavior patterns, which were described as 

random graphs. Erdös and Rényi (1959) characterized formally the creation mechanism and properties of this kind 

of networks. In their model, given a fixed number of nodes, each pair is connected with a probability p. As p 

increases, the graph becomes more complete. Its average shortest distances are considerably shorter than in 

regular networks, its clustering is smaller, and its degree distribution approaches a Poisson. 

More recently, Watts and Strogatz (1998) introduced the small world networks, based on the fact that, despite the 

often large scale of many networks, most of them showed relatively short distances among their nodes. Formally, 

the peculiar feature of these networks is that, given an equal number of nodes, they exhibit a similar average 

distance to that of random graphs, but their clustering coefficient is significantly higher.  

Almost contemporaneously, Barabási and Albert (1999) developed the concept of scale-free networks, studying the 

degree distributions of various empirical networks. In random graphs, most of the nodes have a similar degree, 

around the mean of the distribution. But the authors pointed out that real networks hardly ever show this property. 

They verified that in many contexts their degree distributions followed a Power Law. Mathematically, a quantity 𝑘 

obeys a Power Law if it is drawn from a Probability Density Function (PDF) of the following form:  

𝑃(𝑘) ∝ 𝑘−𝛼 

where 𝛼 is a constant parameter known as the exponent or scaling parameter. The most remarkable feature of this 

distribution is that it frequently originates extreme values very far from the mean, exhibiting heavier tails than 

Poisson, normal or exponential distributions (which had often been used in previous theoretical models). This gives 

rise to the possibility of networks in which few highly interconnected nodes coexist with many low-connected 

nodes. As a result, this kind of distribution implies that, with high probability, there exists a little group of nodes with 

disproportionate centrality and systemic importance in the network, linked with many others much more peripheral. 

In general, their average distance is a little shorter than that of random networks. But in both cases, when the 

number of nodes in the graph grows, their distances increase approximately at the same pace (Albert & Barabási, 

2002). Additionally, scale-free networks often display a higher clustering coefficient (between two and five times 

higher), although they never reach the magnitudes that are usually registered in small world networks. 
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Complementarily, Albert, Jeong, and Barabási (2000) proved that scale-free networks are robust-yet-fragile 

structures. They exhibit a surprising degree of tolerance against random errors, that is, they are very resilient to 

random failures or removals of a relatively large number of nodes (robustness). However, this error tolerance is 

coupled with a high susceptibility to targeted attacks. These networks break rapidly into isolated fragments when a 

few of the most connected nodes are removed (vulnerability). This attribute has critical implications regarding the 

assessment of systemic fragility of interbank networks. If a financial network displays this behavior, then a rigorous 

identification of the central agents becomes a priority task for central banks and regulators who have the 

responsibility of assuring financial stability.  

Instead, random graphs show the converse risk structure. They easily absorb targeted attacks but tend to fall apart 

swiftly when random failures occur. This happens because those graphs do not have particularly central nodes of 

systemic relevance. 

In practical terms, the most crucial consequences of the Power Law distribution derive from the fact that it is fat-

tailed, in comparison with Poisson or Gaussian distributions. This makes the existence of extremely unusual cases 

more common, which in the context of interbank networks should be carefully considered by macro-financial policy-

makers. 

A note of caution is in order when trying to detect Power Laws in financial networks. Scale-free properties tend to 

emerge in the context of large graphs, but interbank networks are usually rather small (compared with social or 

biological ones, for example). This makes it  troublesome to elucidate if a set of observations fits properly with one 

distribution or another, with serious risks of facing finite-sample biases (Clauset, Shalizi, & Newman, 2009). Taking 

that issue into account, many recent empirical and theoretical papers focused simply on the task of detecting 

“heavy-tailed behaviors”. They test fits with other types of fat-tailed distributions in addition to Power Laws, not 

limiting themselves just to that latter alternative. These distributions show histograms with a slower decay than that 

of an exponential distribution as the variable of interest increases (in our case, the node degree): 

lim
𝑥→∞

𝑓(𝑥)

𝑒−𝑥
≠ 0 

On that basis, other heavy-tailed distributions fitted in empirical literature were, for instance, the Lognormal 

distribution (e.g., Sala et al., 2011), or the Weibull distribution (Kobayashi & Takaguchi, 2017). The main objective 

consists, therefore, in defining whether the degree distribution fits reasonably well with a Poisson (in which case 

the underlying network would be similar to a random graph) or if it displays statistically heavier tails (this would 

entail that it shows features closer to a scale-free network). 

3.2. Empirical literature on interbank networks 

The earlier empirical papers on this strand of literature focused on simulating shocks and failures on interbank 

networks of balance sheet exposures, with the specific aim of assessing the strength of contagion channels and 

the resilience of the graph. The most eminent pioneer studies were those of Furfine (1999a, 1999b) for the United 

States and Wells (2002) for the UK, but analogous analyses were also carried out for Switzerland (Sheldon & 

Maurer, 1998), Sweden (Blåvarg & Nimander, 2002), Germany (Upper & Worms, 2002) and Belgium (Degryse & 

Nguyen, 2004).  

Boss et al. (2004), for Austria, and Inaoka et al. (2004), for Japan, carried out the first topological analyses of real 

interbank networks comparable with the one proposed in this paper. Thereafter, a vast proliferation of this type of 
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analyses took place. A detailed Table in the Appendix summarizes the main results of 27 empirical studies on 

interbank networks around the world (for 18 countries, including the topological indicators presented here for 

Argentina). 

Overall, real-world interbank networks are sparse, which means that they are far from complete, as only a small 

fraction of all possible edges actually materializes. In almost all empirical cases the average reciprocity is higher 

than the density of the network, so the connections tend to be more reciprocal than in random graphs. This fact 

denotes that financial institutions prefer to interact with those agents with whom they have already established 

relationships in the past. Hence the relevance of taking into consideration the presence of stable interconnections 

when assessing and modelling the behavior of financial entities.  

Furthermore, interbank networks exhibit clustering coefficients higher than random graphs of the same size, but 

substantially lower than regular networks. They also display, in general, very short distances (between 1.5 and 4, 

on average). Thus, these structures can usually be characterized as small world networks.  

Absolutely all the pieces of research reviewed conclude that interbank networks show disassortative mixing, which 

means that nodes with many edges tend to be connected to nodes with relatively less links, and vice versa.  

There is consensus that financial networks follow heavy-tailed distributions. Many of the studies cited in the 

Appendix ascertain that degree distributions fit reasonably well to a Power Law (with an exponent between 2 and 

3.5), which means that these networks could be described as scale-free. Consequently, it is usual to find few banks 

with an extraordinarily high number of edges, coupled with a myriad of nodes far less interconnected. It is worth 

mentioning that the number of participants in financial networks tends to be comparatively low (for example, much 

smaller than those in biological or social networks), which complicates dramatically the statistical analysis of their 

degree distributions. 

Depending on the specific type of data analyzed, three different subgroups of financial networks can be clearly 

identified across literature: 1) balance sheet exposures; 2) payments; and 3) transactions in the interbank money 

markets. This paper is focused on the latter. This kind of networks is usually smaller than payment networks and is, 

on average, the sparsest among the three subgroups. In addition, they exhibit significantly lower clustering 

coefficients than payment systems, given that in general their values do not exceed 0.2, while in the second case 

the average clustering is around 0.5. The networks based on balance sheet exposures also show clustering 

coefficients slightly smaller than payment systems. 

Particularly, research about the Argentine call market is scarce. One of the most relevant recent papers was written 

by Anastasi, Elosegui, and Sangiácomo (2010). They studied the effects derived from some characteristics of 

individual entities on the interest rate that they are able to negotiate in the market, applying econometric methods 

for panel data. They concluded that the banks’ ownership and the size of their assets affect significantly the interest 

rate at which they obtain or provide funds, as well as their liquidity and the concentration on the supply or demand 

side of the market. 

4. Data 

The BCRA stores daily data about all the transactions carried out in the call market. The information available 

includes the lender and the borrower entities, the amount of money, the loan period, the currency involved, the 

interest rate settled and the type of rate (fixed or variable). Our sample consists of 314,188 loan operations, 
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conducted between January 2nd, 2003 and December 29th, 2017, by 99 different entities (12 SOBs, 41 DPBs, 27 

SFBs and 19 NBFIs). 99.3% of the transactions were settled in Argentine pesos and 88.8% were overnight. 

With the aim of getting comparable results to those of other empirical studies on financial networks over the world, 

for most of this paper the sample is restricted to consider only the overnight loans in pesos with fixed interest rate. 

This subset comprises 278,497 operations (88.6% of the entire dataset).  

For the construction of weighted networks, all the weights involved are based on amounts of money expressed in 

millions of constant pesos of 2017, that is, in real terms (constant purchasing power)4. The data on total deposits, 

assets and liquidity of financial institutions (used in the regressions of Section 7) emerge from information collected 

by the BCRA. 

5. Notation, measures and methods 

The topological measures of a network are indicators that describe its structural properties. The study of network 

topology and its evolution over time are very useful to elucidate the features of the complex set of interconnections 

and interdependencies that arise among the multiple participating agents. 

Since the minimum liquidity requirement established by the BCRA for banks is based on the average amount of 

reserves deposited by them over the whole month, the monthly networks appear to be a better approximation of 

the genuine lattice of relationships among banks emerging from their liquidity management than the daily networks. 

In other words, as that regulation has a direct impact on the call market, the networks which arise on average 

during the whole month reflect more appropriately the structure of interactions established by the financial 

institutions to negotiate their liquidity excesses or deficiencies. Daily networks display an inherently higher level of 

volatility (already high in Argentina for any frequency), which complicates the examination of actual 

interconnections, without adding substantial analytical insights. Accordingly, Finger, Fricke, and Lux (2013), while 

investigating the Italian interbank network, emphasized that the daily networks could not be considered as being 

representative for the underlying “latent” network, as they often seemed to be random, but for longer aggregation 

periods the graphs actually contained significant non-random structure. 

Hence, this paper will focus on the examination of monthly networks. This approach can also be understood noting 

that all the transactions in the call market are based on the previous existence of open credit lines among banks, 

which set up a “latent” network of interrelationships. Every day, some links “activate” and others do not, but they 

remain available in case of need. For these reasons, daily networks may be insufficient to account for the relevant 

structure of interconnections in the interbank market. 

5.1. Network size and representation 

The two most basic topological properties of a network are the number of nodes or vertices (N), which represent 

the participating agents, and the number of links that exist between them (M). In our monthly networks, each node 

 
4: To this purpose, the Consumer Price Index (CPI) issued by INDEC (corresponding to Gran Buenos Aires) was applied for the period between 

January 2003 and November 2006 and for the months between May 2016 and December 2017. For methodological reasons, other sources were 

used for the remaining months. We used an average of the CPIs issued by provincial statistical institutes from December 2006 to April 2011, the 

CPI computed by the National Congress from May 2011 to July 2012, and the CPI issued by the Statistical Institute of the City of Buenos Aires 

from August 2012 to April 2016. Those multiple sources are the most reliable indicators available in each moment. 



 

 

Working Paper 20/08 13 

represents a bank that carried out at least one transaction in the call market during the month in question, while the 

edges are created when at least one operation was settled between a pair of entities during such lapse. These 

indicators provide a first description of both the size of the network and the density of its interconnections. They are 

also useful to estimate other topological measures and are utilized to calculate the computational complexity of the 

algorithms required to perform particular simulations. 

In addition to the typical visual representation of graphs (advantageous because of its clarity and for exploratory 

purposes), there exists a matrix representation. That approach is crucial to deal formally with such structures and to 

implement algorithms based on them. This type of representation is known as Adjacency Matrix, a 𝑁 𝑁 matrix 

(denoted by “A”), whose components, 𝑎𝑖𝑗, are defined as follows: 

𝑎𝑖𝑗 =    
1      𝑖𝑓 |𝑤𝑖𝑗| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑤𝑖𝑗 is the average amount of money traded during the month between the bank 𝑖 and the bank 𝑗. In our 

case, we set the minimum threshold at zero. It is worth recalling that the amounts of pesos involved are always 

expressed in constant purchasing power.  

In other words, each component of the matrix A is defined depending on whether at least one interbank loan was 

settled or not between each pair of 𝑖 and 𝑗 financial institutions during the month. For most of this paper, we will 

focus on the directed networks. It implies that 𝑎𝑖𝑗 and 𝑎𝑗𝑖 are not necessarily equal, thus the matrix may not be 

symmetric. The direction of the flows of money (i.e., if they are being borrowed or lent by a specific bank) is 

relevant to describe the type of edges involved. Therefore, a link is incoming to the borrower and outgoing from the 

lender of the funds. 

Another type of matrix is the so-called Weighted Adjacency Matrix (denoted by “W”), whose components, 𝑤𝑖𝑗, are 

the average amount of constant pesos negotiated by each pair of banks during the month. Weighted graphs are 

useful to take into account the importance of each edge relative to the others, given that a link which involves large 

amounts of money is not equivalent to other that canalizes relatively smaller sums.   

The average distance and the diameter of a network are two additional measures related to the size of the graph, 

which simultaneously consider its level of interconnectedness. The distance5 (𝑑𝑖𝑗) between two nodes 𝑖 and 𝑗 is 

defined as the number of edges along the shortest path connecting them. Thus, the average shortest distance (L) 

is the arithmetic mean of all the distances in the network: 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗
𝑖,𝑗;𝑖≠𝑗

 

It indicates how “close”, on average, are the agents to each other6. In turn, the longest distance between the nodes 

in the network is known as the “diameter” of the graph. Among the different algorithms developed to compute these 

indicators, the most frequently used is the one designed by Dijkstra (1959), which is applied in this paper.  

 
5: Also called “geodesic distance”. 

6: In the case of disconnected networks (i.e., there exists at least a subset of nodes which is not linked at all with the rest), it is usually considered 

the average distance of the biggest subset of connected nodes. 
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5.2. Connectivity  

The “density” or “degree of completeness” (δ) of a network is a measure that quantifies the percentage of the 

potential links that actually exist, given the number of nodes of the graph: 

𝛿 =
∑ 𝑎𝑖𝑗𝑖𝑗

𝑁(𝑁 − 1)
 

This indicator ranges from zero (for a set of nodes with no edges) to 1 (in which case the network is “complete”, as 

it is fully connected). Technically, the stylized network with the minimum degree of completeness is the so-called 

“tree network”, where all nodes are connected by exactly one path, and it has a density equal to 1 divided by the 

number of nodes. As aforementioned, real-world interbank networks tend to display low density. 

For directed graphs, it is often relevant to know if their edges are reciprocal, i.e., to find out to what extent the links 

that go from node 𝑖 to node 𝑗 are also directed in the opposite way, that is, from 𝑗 to 𝑖. The standard measure of the 

“reciprocity” (R) in a network is the following: 

𝑅 =  
∑ 𝑎𝑖𝑗𝑎𝑗𝑖𝑖𝑗

𝑀
 

However, a flaw of this indicator is that it does not take account of the fact that denser networks tend to have, 

consequently, a higher number of reciprocal links, due exclusively to random reasons (Costa et al., 2007). An 

alternative way to address this issue is adjusting R for the degree of completeness of the network under 

consideration: 

𝑅 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =  
∑ (𝑎𝑖𝑗 − 𝛿)(𝑎𝑗𝑖 − 𝛿)𝑖𝑗

∑ (𝑎𝑖𝑗 − 𝛿)2𝑖𝑗
=
𝑅 − 𝛿

1 − 𝛿
 

Values of this indicator above zero imply a larger reciprocity than a random network with the same density, while 

values below zero suggest a smaller level of reciprocity than it would be expected in a random context. The former 

case is known as a “reciprocal” network, and the latter as an “anti-reciprocal” one. These measures are very useful 

for evaluating the type of relationships and interdependences that emerge in financial systems. 

A simple but fundamental concept in network theory is the “degree” of a node. This indicator captures the number 

of nodes that a specific node is connected to. Hence, the degree (𝑘𝑖) of a vertex 𝑖 is defined, for the case of an 

undirected network, as: 

𝑘𝑖 = ∑ 𝑎𝑖𝑗
𝑗∈𝑁(𝑖)

 

Where 𝑁(𝑖) is the set of neighbors of vertex 𝑖; that is, the set of nodes that have an edge (in any direction) with 

vertex 𝑖. In the case of directed graphs, the notions of in-degree (𝑘𝑖
𝑖𝑛) and out-degree (𝑘𝑖

𝑜𝑢𝑡) become relevant. 𝑘𝑖
𝑖𝑛 

stands for the number of nodes with which node 𝑖 has incoming edges (in the context of this paper, the number of 

banks from which a bank 𝑖 has borrowed funds), while 𝑘𝑖
𝑜𝑢𝑡 is the number of nodes with which node 𝑖 possesses 

outgoing links (i.e., the quantity of banks to which bank 𝑖 has lent money): 
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𝑘𝑖
𝑖𝑛 = ∑ 𝑎𝑗𝑖

𝑗∈𝑁(𝑖)

  ;  𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑎𝑖𝑗

𝑗∈𝑁(𝑖)

  

The average degree of a network is the arithmetic mean of its nodes’ degrees, and it constitutes a key measure of 

the connectivity among the participants of the system. The average out-degree and in-degree of monthly networks 

are computed similarly (by the arithmetic mean of  𝑘𝑖
𝑜𝑢𝑡 and 𝑘𝑖

𝑖𝑛 for all 𝑖, respectively). 

An associated indicator is the node strength (𝑠𝑖). It is the sum of the weights of all the edges of a node; that is, the 

sum of the amounts of money involved in all the links of vertex 𝑖: 

𝑠𝑖 = ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)

𝑗∈𝑁(𝑖)

 

The strength of a node can be interpreted as a measure of the intensity of its interactions, and not just as an absolute 

level of connectivity (as is the case of the degree). It is convenient to assess in a different way the relevance of the 

entities that operate large amounts of money per month, with respect to the entities that may be connected to many 

others (i.e., display a high degree) but through low-value operations. The in-strength (𝑠𝑖
𝑖𝑛) and the out-strength (𝑠𝑖

𝑜𝑢𝑡) 

of the nodes will be analogously computed, but weighting the edges only by the funds borrowed or granted, 

respectively: 

𝑠𝑖
𝑖𝑛 = ∑ 𝑤𝑗𝑖

𝑗∈𝑁(𝑖)

  ;  𝑠𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗

𝑗∈𝑁(𝑖)

  

Another key topological feature is the assortative mixing, or assortativity, of the nodes in the graph (𝜌𝑘𝑗). It refers to 

the preference of the nodes between the option of being connected with others of a similar degree to one's own or 

relating to a greater extent with those that exhibit a different degree. Many ways to compute this indicator were 

developed, but we use the Pearson correlation coefficient between the degrees of nodes that share links, in line 

with Newman (2002), one of the seminal contributions regarding this matter: 

𝜌𝑘𝑗 =
𝑀−1∑ 𝑘𝑙𝑗𝑙 − [𝑀−1∑

1
2 (𝑘𝑙+𝑗𝑙)𝑙 ]

2

𝑙

𝑀−1∑
1
2 (𝑘𝑙

2 + 𝑗𝑙
2)𝑙 − [𝑀−1∑

1
2 (𝑘𝑙+𝑗𝑙)𝑙 ]

2 

Where 𝑘𝑙 and 𝑗𝑙 are the degrees of the vertices at the ends of the 𝑙th edge, with 𝑙 = 1, …, M. The assortativity 

coefficient 𝜌𝑘𝑗 characterizes the correlation between the degrees of connected nodes, and, as such, it ranges from 

-1 to 1. If it is positive, the network is said to show an assortative behavior (sometimes also called “homophily”), 

since it means that the nodes tend to be connected to other of a similar degree. If it is negative, the network is said 

to be “disassortative”, implying that low-degree nodes tend to attach to the high-degree nodes of the graph, and 

vice versa. The closer the coefficient is to 1 (or -1), the more intense is the assortative (or disassortative) behavior 

of the nodes. Just to mention a couple of examples, it has been found that social networks often display an 

assortative behavior (i.e., high-degree nodes prefer to connect with others of similar degree), while technological 

and biological networks tend to be disassortative (Newman, 2002, p. 4). Financial networks are prominently 

disassortative (as it can be verified from the evidence summarized in the Appendix), which means that financial 

institutions with few connections are more prone to establish links with banks of high degree, and vice versa. 
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This fact has significant implications, both in terms of the network’s structural characteristics and in terms of its 

stability and systemic risk. For instance, disassortative networks are particularly vulnerable to targeted attacks on 

their highest-degree vertices, while assortative networks proved to be more resilient to them (Newman, 2002).  

The clustering coefficient of the monthly networks is also examined in this paper. It is a measure of the probability 

that two nodes which are neighbors of a same node also share a link themselves. The clustering coefficient of node 

𝑖 is defined as follows: 

𝑐𝑖 =
1

𝑘𝑖(𝑘𝑖 − 1)/2
∑𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ
𝑗,ℎ

 

Basically, it indicates whether two vertices, which are connected to a third vertex, have a connection between them; 

that is, it states if they form a triangle. The average clustering coefficient quantifies the density of triangles in the 

graph and is computed as the arithmetic mean of all the individual 𝑐𝑖. It is a measure of the density of interconnections 

within the network. A high clustering coefficient reveals the existence of stable and lasting relationships among the 

nodes, with all the potential consequences that it entails, which can be either positive (e.g., an enhanced resilience 

to random and relatively mild shocks) or negative (e.g., higher level of contagion when facing targeted and intense 

attacks). 

5.3. Centrality and concentration 

Centrality is a widely used concept in the context of social networks and it has been extensively studied for 

decades. It has several interpretations and implications, like the measurement of power, influence or control 

exerted by a node over the rest of the network. Moreover, centrality measures offer the possibility of ranking nodes 

according to their “relevance” in a graph. Thus, these indicators are key to detect too-interconnected-to-fail 

vertices, and consequently to estimate the potential vulnerability of a network, as the removal of those nodes could 

possibly result in a fast fragmentation of the graph (Martínez-Jaramillo et al., 2012). 

Several centrality measures have been developed to quantify the relevance of each node in a graph, based on 

different approaches. All the measures presented here are defined in such a way that a higher value is always 

interpreted as a larger centrality of a node in the network. This notion is closely related to the determination of the 

systemic importance (BIS, 2011) of a bank in the financial system, from the perspective of its interconnectedness. 

In the context of interbank markets, quoting Martínez-Jaramillo et al. (2012), a financial institution can be 

characterized as “central” if it displays one or some of the following features: 

 Possesses numerous linkages with other members of the network (degree). 

 The total amount of its assets, liabilities and/or flows in the network are large (strength). 

 Its failure could spread contagion in a few steps (closeness). 

 Interacts with counterparts which are also relevant (eigenvector). 

 Many paths pass through it (betweenness). 

Degree Centrality (𝑘𝑖) is one of the most basic measures of network centrality. According to it, a node is more 

relevant in a network if it is connected to many other nodes, given that its failure could impact on them directly. For 
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more specific purposes, it is also possible to calculate the out-degree centrality (𝑘𝑖
𝑜𝑢𝑡) and the in-degree centrality 

(𝑘𝑖
𝑖𝑛) of the nodes.  

A similar procedure is applied to compute the strength centrality of each subgroup, taking into account the total 

strength (𝑠𝑖) as well as the in-strength (𝑠𝑖
𝑖𝑛) and out-strength (𝑠𝑖

𝑜𝑢𝑡). A high Degree Centrality exhibited by a node 

does not necessarily mean that the institution has a strong impact on the others, as it could be the case that those 

various connections actually involve low amounts of money. In contrast, Strength Centrality is useful to assess the 

relevance of each node or subgroup with respect to the total amounts of liquid funds traded in the market. 

The Closeness Centrality (CC) of a node is based on how many intermediaries are required to pass through in 

order to reach it. This measure is associated with the capability of a node to spread contagion to the rest of the 

network. It is calculated as the inverse of the average length of the shortest paths from a node 𝑖 to all the other 

vertices in the graph. We use a normalized version of this metric, which allows us to compare its values 

homogeneously among graphs that do not have the same N: 

𝐶𝐶(𝑖) =
𝑁 − 1

∑ 𝑑𝑖𝑗𝑗
 

In order to find the average closeness of the network, we simply calculate the arithmetic mean of 𝐶𝐶(𝑖) for all 𝑖 ∈ 𝑁.  

Betweenness Centrality is associated with the strategic location of a node on the network’s communications paths. 

In the case of the call market, this type of centrality reflects the influence of a node on the liquidity channels within 

the system. Betweenness Centrality reveals how fast potential shocks can spread through the network, while other 

measures, like the degree or closeness centrality, account for the probability of amplification of shocks to the 

neighbors of each vertex (Lublóy, 2006). The Betweenness Centrality (B) of a node 𝑖 is defined as follows: 

𝐵(𝑖) = ∑
𝜎𝑗ℎ(𝑖)

𝜎𝑗ℎ
𝑖≠𝑗≠ℎ∈𝑁

 

Where 𝜎𝑗ℎ is the total number of shortest paths between 𝑗 and ℎ, and 𝜎𝑗ℎ(𝑖) is the number of shortest paths 

between 𝑗 and ℎ that pass through vertex 𝑖. Dividing 𝐵(𝑖) by (N-1)*(N-2), the measure is normalized, so that it can 

be treated as a comparable indicator among graphs of different sizes. The average betweenness of the network is 

derived from the arithmetic mean of the normalized 𝐵(𝑖) for all 𝑖 ∈ 𝑁. 

The last centrality measure examined in this paper is the Eigenvector Centrality, first proposed by Phillip Bonacich 

(1972). As its name suggests, the centrality value of node 𝑖 is given by the 𝑖th entry of the eigenvector (e) 

associated to the largest eigenvalue (λ) of the graph’s adjacency matrix (A): 

𝜆𝒆 = 𝐴𝒆 

This measure exhibits the peculiarity that it takes into consideration the centrality of the neighbors of a node to 

compute its centrality. It can be understood as the weighted sum of the direct and indirect connections of the node, 

at any length. Hence, it takes into account the entire pattern of the network to derive the indicator, with the aim of 

capturing the inherent complexity of the existing relationships in the graph. This measure exhibits some similarities 

with the paradigmatic PageRank algorithm, which is used by Google to rank webpages according to the relative 

importance of their connections, as proposed in the seminal paper of Page et al. (1999). 
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Based on these centrality measures (and adding some control variables that will be detailed below), in Section 7 

we estimate the empirical effect of a higher centrality on a bank’s capability to negotiate more convenient interest 

rates in the call market. Other very similar analyses were carried out by Bech and Atalay (2008) for the Federal 

Funds Market of U.S.A., by Akram and Christophersen (2010) for the interbank market of Norway, by Kraenzlin and 

von Scarpatetti (2011) for the Swiss market, and by Bräuning and Fecht (2012) for the German case. All these 

contributions verified the existence of a significant positive effect derived from a greater centrality on the ability to 

achieve better interest rates in interbank money markets. 

This paper applies a similar methodology to the one used by Bech and Atalay (2008). An econometric regression is 

estimated by Ordinary Least Squares (OLS), including the required control variables to remove potential sources of 

endogeneity. After that, the robustness of the resulting coefficients is tested by changing alternatively the 

regressors included in the specification (always computing heteroskedasticity-robust standard errors). All the daily 

transactions are taken into account individually for these exercises (not their monthly averages). More details on 

this estimation are provided in Section 7. 

Additionally, the centrality analysis is complemented by an assessment of the concentration of liquidity flows in the 

market. The typical Herfindahl-Hirschman Indices are computed to measure the existing concentration in the 

lenders’ side of the market -HHI(L)-, on the one hand, and among the borrowers -HHI(B)-, on the other. 

𝐻𝐻𝐼(𝐿) =∑(
𝑣𝑖𝑗

𝑉
)
2

𝑖

 ;  𝐻𝐻𝐼(𝐵) =∑(
𝑣𝑗𝑖

𝑉
)
2

𝑖

 

Where 𝑣𝑖𝑗 and 𝑣𝑗𝑖 denote, respectively, the total amounts lent and borrowed by each entity 𝑖 in a specific month 

(always expressed in real terms)7, while 𝑉 refers to the total traded amount of money in the network: 

𝑉 =∑𝑣𝑖𝑗
𝑖

=∑𝑣𝑗𝑖
𝑖

 

HHI is defined as the sum of the squares of each entity’s share of the total amount of money traded in the market. 

HHI(L) and HHI(B) describe, respectively, the concentration of lending and borrowing by individual nodes in the 

network. These are indicators often used to measure market power and competition. HHI ranges from 0 to 1. A 

higher value indicates a greater concentration of liquidity among few participants. As its value decreases, the closer 

it is to 1/𝑁, the more competitive the market is, reflecting a more balanced situation regarding the liquidity 

management within the system. To obtain comparable measures across time, this index is normalized by adjusting 

it according to the changes in the number of nodes in the market: 

𝐻𝐻𝐼∗ = 
(𝐻𝐻𝐼 −

1
𝑁)

1 −
1
𝑁

 

Consequently, these indicators can be treated in a homogeneous and comparable way across networks of different 

sizes. 

 
7: It is worth noting that 𝑤𝑖𝑗 and 𝑤𝑗𝑖 represent the average volume of money traded by each pair of entities 𝑖 and 𝑗 during a particular month, 

while 𝑣𝑖𝑗 y 𝑣𝑗𝑖 reflect, instead, the total sum of the funds traded by each pair of entities in a month. 
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5.4. Degree distribution 

With the purpose of determining which is the distribution function that best fits to the empirical degree distribution of 

monthly networks, the methodology proposed by Clauset et al. (2009) is applied. This procedure is one of the most 

widely used in the literature related to these topics (Gillespie, 2015; Martínez-Jaramillo et al., 2012), since it has 

proven to achieve more robust results than the other existing techniques. 

Our main objective is to find out if it is accurate to assume that the degree distributions of the monthly networks 

behave similarly to that of random graphs (which are best described by a Poisson), or if the empirical data fits 

better to a “heavy-tailed” distribution, such as, for example, a Power Law or a Lognormal. In the latter case, 

“unusual” or disruptive events (far away from the mean or median of the distribution) exhibit a relatively higher 

probability of happening than in the former case. This fact gives rise to very significant consequences in terms of 

the systemic risk to which the network is subject in each case.  

As the Power Law distribution function diverges when the variable in question approaches zero, it is necessary to 

establish some lower bound (𝑥𝑚𝑖𝑛) in order to estimate its parameters, based on the empirical data. It is often the 

case that degree distributions follow a Power Law only in the tail, i.e., for values above the lower bound 𝑥𝑚𝑖𝑛, hence 

the critical role of an unbiased estimation of its real value. 

Table 2 presents the theoretical distribution functions that are fitted to the data in this paper, and the appropriate 

normalizing constant (C) required to ensure that the sum of probabilities over the domain of the variable totals 1. As 

it can be easily noted, parameter 𝑥𝑚𝑖𝑛 constitutes a prerequisite to estimate the other parameters, which are in turn 

estimated by the method of Maximum Likelihood (ML). The ML estimators are advantageous because they are 

consistent and asymptotically efficient8. 

Table 2. Probability Density Functions tested for the fit to the empirical data 

 
Note: C is the appropriate normalizing constant such that ∫ 𝑝(𝑥)

∞

𝑥𝑚𝑖𝑛
𝑑𝑥 = 1 in each case. In turn, 𝑒𝑟𝑓𝑐 is the complementary error function, defined as 𝑒𝑟𝑓𝑐(𝑥) =

2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

∞

𝑥
.  

The main contribution of Clauset et al. (2009) consists in the fact that they choose the value of 𝑥𝑚𝑖𝑛 that minimizes 

the differences between the probability distributions of the empirical data and the best-fit theoretical model 

(regardless of the specific model selected). A variety of methods are available to measure the distance between 

two probability distributions, but for non-normal data the most usual is the Kolmogórov-Smirnov or KS statistic, 

 
8: Clauset et al. (2009, Appendix B) show a summarized formal proof of this statement. 

Power 
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𝑥−𝛼 (𝛼 − 1)𝑥𝑚𝑖𝑛
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1

𝑥
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𝑒 −∑
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which is the maximum distance between the Cumulative Distribution Function (CDF) of the data and the CDF of the 

fitted model: 

𝐾𝑆 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝐷(𝑥) − 𝑃(𝑥)| 

Where 𝐷(𝑥) is the CDF of the data, for values above 𝑥𝑚𝑖𝑛, and 𝑃(𝑥) is the CDF of the hypothetical model fitted by 

ML, for the same region 𝑥  𝑥𝑚𝑖𝑛. The proposed estimate of 𝑥𝑚𝑖𝑛 is then the value of 𝑥𝑚𝑖𝑛 that minimizes KS. 

It is worth noting that the authors highlighted the fact that this methodology achieves more accurate results 

provided the sample has a size of about 1,000 or more observations. It constitutes a note of caution that must be 

taken into consideration while interpreting this type of empirical analyses in the context of financial networks, where 

the sizes of the data sets are often comparatively modest. In our case, the monthly networks examined are also 

relatively small, a fact that amplifies potential estimation biases, but very common particularly in networks based on 

interbank loans. 

In order to compute the variance of the parameter estimates (both for 𝑥𝑚𝑖𝑛 and for the others) the non-parametric 

“bootstrap” method is applied.  

However, once the parameters of a specific distribution are estimated to fit the data, it is also necessary to analyze 

whether that distribution represents a plausible description of the data or not. Regardless of the true underlying 

distribution from which the data set was drawn, it is always possible to fit any distribution. Hence, it is imperative to 

examine the goodness-of-fit to the real observations. To this purpose, Clauset et al. suggest a goodness-of-fit test 

which generates a p-value that measures the plausibility of the hypothetical model. The test evaluates the 

“distance” between the distribution of the empirical data and the hypothesized model. This distance is compared 

with distance measurements for comparable synthetic data sets generated from the same theoretical model, and a 

p-value is then defined as the fraction of the synthetic distances that are larger than the distance estimated by our 

original KS. If this p-value is large (close to 1) then the difference between the empirical data and the model can be 

attributed just to statistical fluctuations, but if it is small, the model would not be a plausible fit to the data.  

In practice, after deriving our initial KS statistic, a Monte Carlo procedure is applied, generating 3,000 synthetic 

data sets from the hypothesized distribution. After that, its parameters are estimated in the same way than before 

(by obtaining the 𝑥𝑚𝑖𝑛 that minimizes the KS statistic and estimating the other parameters by ML), individually for 

each simulated sample. Consequently, we derive 3,000 KS statistics, one for each synthetic data set. Finally, we 

compare them with the initial value arising from the first exercise. If the fraction of synthetic KS that are larger than 

the KS for the empirical data is “big enough”, the evidence would not reject the hypothesized distribution function 

as a reasonably good fit to the data. The authors choose a p-value  0.1 as threshold for rejection of the null 

hypothesis, but they also mention that some researchers could possibly impose the less stringent rule of p  0.05. 

This paper examines whether the degree distributions of the monthly networks (the total degree distribution as well 

as the in-degree and out-degree distributions) fit better to a Poisson, to a Power Law, or to a Lognormal distribution 

(see Table 2). These three theoretical distributions were chosen for several reasons. Poisson distribution describes 

behaviors similar to those of random graphs, while the Power Law is the paradigmatic case among heavy-tailed 

distributions. Between these two extreme cases, the Lognormal distribution displays also heavy tails, but exhibits a 

greater flexibility than a Power Law. This feature usually allows for better fits to empirical data that behave more 

similarly to fat-tailed distributions but in a less strict way than a Power Law. 

After estimating the parameters of each distribution according to a best-fit to the data, the goodness-of-fit test 

mentioned before is carried out. Then, the performance of the different models is assessed by comparing the log-
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likelihood levels associated to each distribution, based on the empirical data and the parameter estimates. For 

instance, if the log-likelihood resulting from the Lognormal fit is higher than the one derived from the other 

proposed distributions, that would indicate that the Lognormal describes better the data set (in spite of the possible 

fact that in none of the three cases the hypothesized model is rejected by the goodness-of-fit test). 

6. Network analysis of the overnight money market 

This section is divided into four subsections. Subsection 6.1 reviews some basic topological measures associated 

with the size of the interbank network and their evolution over time, while 6.2 describes its density and some 

characteristics concerning its connectivity. Subsection 6.3 explores different centrality measures and studies the 

concentration of liquidity flows by individual banks. Finally, Subsection 6.4 focuses on the detection of the 

distribution function that best fits to the empirical degree distribution present in the graphs. The main objective in 

that subsection consists in elucidating statistically whether that degree distribution can be accurately described by 

a “heavy-tailed” distribution or not. This feature entails significant insights when carrying out simulations or 

theoretical stress tests, which are typical exercises implemented by financial regulators over the world. 

6.1. Size 

One of the salient features of the Argentine interbank network is its relatively small size. Nevertheless, this is a 

characteristic shared, in general, by overnight loans networks, as they tend to be smaller than graphs based on 

balance sheet exposures or payments. If we circumscribe to the former group of networks, the Argentine is not the 

smallest (cf. the Appendix, but it is substantially tinier than, for instance, the Fed Funds network in the U.S.A. (Bech 

& Atalay, 2008) or the Italian Overnight Money Market (Kobayashi & Takaguchi, 2017). 

Figure 4. Monthly total number of active nodes and edges in the call market 

 
Note: the red circles signal the monthly networks shown in Figure 5. A specific month of each stage was selected in order to display an introductory visual 

approximation of the network’s structural changes throughout the period under analysis. 

Specifically, the number of nodes (i.e., active financial entities in the call market) is not the lowest, compared with 

other interbank networks, but it is significantly smaller than the largest ones. A similar result emerges for the 
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number of edges, although in this case it is relatively more evident that they are less numerous than in the majority 

of the other financial networks analyzed so far. 

As mentioned in Section 5, the present analysis is focused on the monthly networks. During the period between the 

years 2003-2017, the monthly average of active nodes was 65.4±5.9 entities, which established an average of 

237.5±73.1 edges per month (considering the directed graphs). It is worth highlighting the large fluctuations 

suffered by these two variables, with their most pronounced movements taking place between 2003 and 2010 

(Figure 4). The most intense volatility is observed in the first stage of the period under analysis, mainly associated 

with the fact that the financial system was still recovering slowly after the 2001 crisis and the sovereign debt default 

was not solved yet (which hindered the normal conduct of financial operations in the country). 2003 was the year 

with the lowest average number of active banks (53.6±4.2) and links (127.4±19.8)9. 

Figure 5. Argentine interbank networks (monthly average) 

 
Note: Each node represents a financial entity (green: State-Owned Banks; red: Domestic Private Banks; light blue: Subsidiaries of Foreign Banks; dark blue: 

Non-Bank Financial Institutions). Each edge denotes the existence of at least one loan settled between a pair of entities during the month, and its color is defined 

by the lender entity. The visualization layout of the nodes was computed by the Fruchterman-Reingold algorithm (1991). 

 
9: In 2009, in the context of the global financial crisis, the number of edges fell to a slightly higher value (128.1±18.9), but the decline was not that 

significant in the case of the participating nodes (61.4±1.8). 
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As Argentina recovered from the crisis, the interbank network in 2004 started to grow considerably, both in terms of 

its edges and its active nodes (Table 3). The percentage of participating banks in the call market with respect to the 

total number of authorized entities in the system increased from 55% in 2003 to an average of 84.5% in 2007, and 

then stabilized at around 81.5% during the rest of the period10 (Figure 6). 

Table 3. Nodes and edges: monthly summary statistics 

 
* Stage 1 is subdivided in two parts in this Table, with the aim of showing in more detail the values observed during 2003, year in which the minimums for the whole 

period took place. 2008 is omitted because the network experienced a continuous shrinkage all year long, so its average values are not illustrative of what really 

occurred in terms of the network’s empirical dynamics. 

Figure 6. Active nodes in the call market (% of total entities in the financial system) 

 
Source: BBVA Research 

During the second stage of the period under analysis the call market displayed the greatest dynamism, reaching 

peaks in terms of active nodes and links in 2007. Table 4 shows the average number of participating entities, by 

 
10: Only temporary deviations from that average took place in two specific moments: the 2008-09 global crisis and when strict capital controls 

were established in 2011. During the toughest months of the crisis, the participation ratio hit a minimum of 67.9% (May 2009). The other local 

minimum is observed few months after the implementation of capital controls, when the participation ratio reached 72.5% in April 2012. 

Average
Standard 

Dev.

Coeff. of 

variation
Min. Max. Average

Standard 

Dev.

Coeff. of 

variation
Min. Max.

1 Jan-03 - Dec-03 54 4.2 7.7% 45 58 127 19.8 15.5% 99 162

1' Jan-04 - Jun-05 59 6.7 11.3% 47 71 189 58.0 30.7% 92 293

2 Jul-05 - Dec-07 72 3.6 5.0% 63 77 341 40.3 11.8% 259 436

3 Jan-09 - Feb-10 61 1.8 2.9% 57 64 128 18.9 14.8% 103 158

4 Mar-10 - Oct-11 67 2.3 3.4% 63 72 220 48.2 21.9% 144 319

5 Nov-11 - Nov-15 66 2.9 4.4% 58 71 251 29.7 11.8% 180 322

6 Dec-15 - Dec-17 66 1.5 2.3% 62 68 246 29.7 12.1% 168 289

Date

Nodes Edges

Stage*
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type, in each time interval. It is worth pointing out that SFBs are the only type of entities with a monotonic decrease 

in number, while the other entities showed an evolution more aligned with the behavior of the network as a whole. 

This phenomenon suggests that this sort of banks behave in a particular way, less synchronized with the rest of the 

system. 

Table 4. Average number of participants in the call market, by type of entity 

 
Source: BBVA Research 

Throughout 2008, when the global financial crisis broke out, a notable contraction of the networks’ size 

materialized. A minimum of 57 nodes and 110 edges was reached in May 2009. The networks remained shrunk 

around those values until the beginnings of 2010, when they started to increase in size until they got to the levels at 

which they would then stay relatively unchanged until 2017, around a monthly average of 66 nodes and 243 edges. 

After the recovery from the crisis, the network showed substantial stability (perhaps in line with the economic 

stagnation that the country has experienced since 2011), only paused by a transitory decline during the early 2012, 

in a recessive economic context, after the introduction of severe FX controls that hindered the normal activity of the 

financial system. 

The number of nodes (N) and edges (M) tend to move together. In fact, from a log-log regression between those 

two variables, it is inferred that M α N3.45. This suggests that the average degree of the network -〈𝑘〉- increases with 

order N2.45, or, which is the same: 〈𝑘〉 α N2.45 (Figure 7)11. This result contrasts with the theoretical papers that 

assume that the average degree of the network remains fixed over time (that is, they presume implicitly that N and 

M grow simultaneously in a linear way)12. 

This log-log relationship was present in almost every time stage, with the peculiarity that during the 2008 crisis the 

intercept seems to lie in a value lower than the average. Only 7 out of the 180 monthly networks analyzed were 

considered as outliers and excluded from the regression, all of them belonging to the first stage (January and 

February 2003, and the five months between November 2003 and March 2004). It can be appreciated that those 

individual networks took place in the most volatile context during the time span under study. After this unstable 

lapse, the identified relationship between N and M seems to stabilize around the aforementioned levels.  

 
11: This M-N elasticity is significantly higher than the elasticity estimated by Kobayashi and Takaguchi (2017) for the Italian Overnight Market, 

where they found that M α N1.5. 

12: See Dorogovtsev and Mendes (2003) for further discussion on this topic. 

SOB DPB SFB NBFI

1 Jan-03 - Dec-03 3 21 20 9 54

1' Jan-04 - Jun-05 4 27 19 9 59

2 Jul-05 - Dec-07 8 31 19 13 72

3 Jan-09 - Feb-10 6 25 18 14 61

4 Mar-10 - Oct-11 6 28 18 14 67

5 Nov-11 - Nov-15 7 29 16 14 66

6 Dec-15 - Dec-17 6 32 15 13 66

Total 

(average)
Stage Date

Type of entity



 

 

Working Paper 20/08 25 

Figure 7. Log-Log relationship between N and M 

 
Note: the horizontal axis of the scatter plot depicts the natural logarithm of the number of nodes in each monthly network, while the vertical axis shows the natural 

logarithm of the number of edges. 

Other relevant indicators to measure the size of the networks are the diameter and the average shortest distance. 

The latter (considering the directed graphs) displayed an average of 2.8±0.5, while the diameter oscillated around 

7.9±1.9. These two topological metrics followed similar trajectories, and roughly co-moved with the number of 

active nodes and edges (Figure 8). 

Figure 8. Average distance and diameter of monthly networks 

 
Note: the horizontal axis of the scatter plot depicts the natural logarithm of the number of nodes in each monthly network, while the vertical axis shows the natural 

logarithm of the number of edges. 

The average shortest distance of the networks generally remained very stable, showing values between 2 and 3, 

with few exceptions (which, in any case, also stayed close to that range). During the first stage of the period, the 

average distance increased from a level lower than 2 to approximately 3, and then remained stable around that 

number from 2005 until 2008 crisis, when it temporarily fell again to nearly 2. In the years of FX controls it 



 

 

Working Paper 20/08 26 

practically did not experience considerable changes (although its volatility was higher than in the second stage), 

exhibiting a mean of 2.8. In 2016-17 the distances appear to regain an incipient upward path, reaching and 

surpassing steadily the threshold of 3.  

These distances are clearly within the typical range of values displayed by the financial networks of the world (see 

the Appendix). They are comparatively quite short, which tends to support the hypothesis that also the Argentine 

interbank network exhibits the characteristics of a “small-world network”. 

The diameter followed a similar path, although it was substantially more volatile. It grew from 4 (or less) in 2003 to 

an average of 8 in the second half of 2004, keeping roughly this mean level thereafter, until 2015. In Stage 6 of the 

period under consideration, it is also perceived a renewed rise in this indicator (though not abrupt), when monthly 

networks started to frequently display diameters noticeably above 9. 

In conclusion, the size of interbank networks in the call market experienced a significant volatility, specially 

between 2003 and 2010, when they first increased sharply until 2007, but then shrunk partially because of the 

global crisis, among other factors. Finally, after a quick recovery from this event, the topological measures studied 

in this Section stabilized around values substantially higher than the initial ones. Since 2010, all these indicators 

referred to the size of the networks tended towards stabilization. It is worth mentioning that in 2016-17 the number 

of edges showed an incipient decay, while the diameter and the distance increased marginally. Nevertheless, these 

movements are too mild to draw definite conclusions about possible changes in the trends of these structural 

metrics. 

6.2. Connectivity 

Interbank networks of overnight loans usually exhibit low density (Hüser, 2015) in comparison with other types of 

networks studied in various sciences (e.g., biology, physics, social networks, among others). The Argentine 

financial network here analyzed is not the exception, since only 5.5%±1.1% of the potential number edges actually 

exists (given the number of active nodes in each month). Thus, monthly networks are far from being “complete” 

(Figure 9). 

The density of the monthly networks followed a similar path to the other topological measures already described: 

from a starting point of 5% in average during the first stage, it went up to 6.7% in the second (it reached peaks of 

7.9%), but, during the crisis, it declined to a minimum of 3.5%. After a recovery of the density levels throughout the 

fourth stage, in 2011 it reached nearly 6%, at around which it would then stabilize until the end of 2017. 

The reciprocity coefficient experienced much more volatility, hitting strikingly high values in 2011. In general, it also 

shares an evolution comparable with the other metrics mentioned, but its variability makes it difficult to identify 

patterns as clearly as in the other cases. The average reciprocity of the network was 7.9%±3%, reaching a 

maximum of 17.7% in September 2011 and a minimum of 1.8% in the beginnings of 2010. These figures are in line 

with other real-world interbank networks, where the reciprocity is typically higher than the density. However, the 

average reciprocity level found for the Argentine call market is among the lowest ones. 
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Figure 9. Density and reciprocity of monthly networks 

 
Source: BBVA Research 

The reciprocity exceeded the level of density in 77.2% of the months. This implies that the network tends to show a 

higher reciprocity than a random network of equal degree of completeness. That is, the banks are prone to 

establish two-way relationships between each other with motivations different from a mere randomness. This fact 

highlights the importance of taking into account the existence of steady (non-random) relationships between the 

nodes within the call market (at least when evaluating its systemic stability). 

Nevertheless, the evidence in this matter is not completely conclusive. Even though the reciprocity coefficient 

adjusted for the network’s density turns out to be 2.5%±3.1% (that is, in average above zero), the fact that, within 

only one standard deviation away from the mean, the indicator shows negative values weakens to some extent 

these conclusions. However, in none of the different time stages the adjusted reciprocity coefficient displayed a 

general average below zero. 

The assortativity coefficient was -16.3%±9.4%. This implies that the network is disassortative, which means that 

low-degree banks are more likely to interact with high-degree banks than with other low-degree ones (i.e., the 

network is not homophilic). It is the typical behavior found in all the other financial networks analyzed over the 

world. 

This disassortative behavior (that is, a negative assortativity coefficient) was present in 94% of the months (Figure 

10). The interbank network displayed a positive coefficient only in 10 out of the 180 months included in the sample. 

Curiously, that sporadic assortative behavior arose mainly in months during which the reciprocity coefficient 

reached its highest level, in 2011 and 2012, pointing to the fact that in those moments high-degree entities tended 

to create edges between each other, in a more reciprocal way than during the rest of the period under analysis. 

Nonetheless, when not only overnight loans but also all the other maturities are considered, the assortativity 

coefficient remains negative during the whole period. This fact reinforces the conclusion that the high-degree 

entities tend to create more links with low-degree entities, but it additionally suggests that the transactions settled 

with those low-degree banks frequently have maturities longer than a day (while the most connected banks 

regularly carry out overnight transactions). 
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Figure 10. Assortativity coefficient, according to the maturity of the loans considered 

 
Source: BBVA Research 

Over the last seven years of the sample (2011-2017), the assortativity coefficient was in average less negative 

(that is, nearer to zero in absolute terms) than in the first years. Coincidentally, most of the topological measures of 

the network were relatively more stable in the last two time-stages. Hence, given the stability of other structural 

parameters, the network moderated its disassortative behavior (without becoming assortative) in that lapse. In 

contrast, during the most booming years in terms of the network’s growth (2003-07), disassortativity tended to 

accentuate.  

Thus, the identification of the high-degree nodes in the system becomes a central task, since they represent the 

cornerstone on which the other banks (less connected and with more volatile and smaller trading volumes) can 

build new links to manage their liquidity during buoyancy periods of the network’s activity. In other words, this core 

of highly interconnected entities represents a kind of “gear” that makes the market work, and where the less 

connected institutions resort when financial intermediation in general recovers dynamism in the economy.  

On another note, the call market shows a level of clustering systematically above that of a comparable random 

network throughout the period studied, as expected a priori (Figure 11). There is only one exception in January 

2009, in the context of the global financial crisis. It is usual to find in financial networks the creation of relatively 

stable clusters, not randomly established, because of the propensity to make lasting relationships among financial 

agents. This conduct allows them to reduce risks, for instance, derived from moral hazard and adverse selection, 

inherent to financial markets. 

However, although financial networks tend to show clustering coefficients higher than those of random graphs 

because of the reasons stated above, at the same time the need of risk diversification puts an upper limit to the 

increase in that indicator. This trade-off explains why clustering tends to be higher in interbank networks than in 

random graphs but it simultaneously does not reach comparatively high values in relation with other types of real-

world networks (e.g., biological or linguistic networks usually show significantly higher coefficients). These 

clustering levels are similar to those that emerge in empirical scale-free networks. 

In broad terms, the case of Argentina follows these guidelines, displaying an average clustering coefficient of 

19%±5.1%. The evolution of the indicator presents some noteworthy features. During the global financial crisis, the 
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clustering levels of the network decreased towards values similar to those of a random network, while the number 

of edges and active nodes fell alongside. That means that in a context of systemic financial distress and of decline 

in the size and connectivity of the network, it showed some symptoms of “randomization”. This could be interpreted 

as a sort of defense mechanism of the network, which could turn it more resilient, avoiding the risks of contagion 

that usually arise when financial entities are very interconnected. 

Figure 11.a. Clustering coefficient  Figure 11.b. Relative clustering coefficient 

 

 

 
Note: The average clustering coefficient observed in the empirical 

networks is compared with the clustering coefficient that would emerge 

from a random graph with the same number of nodes (N) and with the 

same average degree 〈𝑘〉. The average clustering coefficient of a random 

network is equal to: 〈𝑘〉/𝑁. 

 Source: BBVA Research 

After the crisis and the stabilization of the network structure, it maintained relatively higher and invariant clustering 

coefficients, around 20%, far from the values that would be seen in a comparable random network, until end-2017, 

when it seems to start showing a new incipient and gradual decline. 

Table 5. Network’s topological measures (average of each period) 

 
Source: BBVA Research 

Stage Date
Avg. 

Distance
Diameter Density Reciprocity Assortativity Clustering

1 Jan-03 - Dec-03 1.9 5.1 4.5% 6.6% -17.1% 20.5%

1' Jan-04 - Jun-05 2.4 6.4 5.3% 6.9% -23.0% 20.2%

2 Jul-05 - Dec-07 2.9 8.3 6.7% 8.1% -25.3% 23.9%

3 Jan-09 - Feb-10 2.7 7.6 3.5% 5.4% -18.7% 10.3%

4 Mar-10 - Oct-11 2.9 8.3 5.0% 9.1% -6.7% 16.9%

5 Nov-11 - Nov-15 2.8 8.1 5.9% 8.3% -11.1% 20.2%

6 Dec-15 - Dec-17 3.2 9.1 5.7% 8.2% -15.1% 17.0%
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In summary, starting from very low levels in 2003, the number of active nodes and edges, the diameter, average 

distance, density and reciprocity of the network grew altogether in simultaneous with the economy until 2007. 

During this expansion, disassortativity accentuated, as also did the clustering coefficient. The global crisis 

produced a significant contraction in all these metrics, and banks’ behavior tended towards that of a random 

network, in terms of its reciprocity and clustering. In 2010-11 almost all the topological measures experienced a 

notorious recovery, with the peculiarity that reciprocity reached historical peaks along with positive assortativity 

coefficients among entities. This phenomenon differentiates that recovery phase from the growth observed during 

the first years of the sample. In 2011, all the indicators got to levels that would remain rather stable in average until 

2015. Not many significant changes were witnessed in the years 2016-17, except for an incipient decrease of the 

relative clustering coefficient (compared with a random graph) and the density of the network, neither of them 

intense enough to draw categorical conclusions.  

6.3. Centrality and concentration 

The simplest centrality measure is the average degree of active nodes. Taking into consideration the whole period, 

financial entities exhibited an average total degree of 7.1±1.8, experiencing movements quite proportional to the 

number of edges in the network (Table 6). This indicator was clearly heterogeneous among the different types of 

entities. SFBs were the group with the largest average total degree in the network since 2003 until the global crisis, 

moment when DPBs acquired this central role until 2017. On the other end, NBFIs represented the group of entities 

with the lowest average degree during all the period under analysis. 

Table 6. Average total degree, in-degree and out-degree, by type of entity 

 
Source: BBVA Research 

The different types of entities assumed contrasting roles in the market. SOBs had an average out-degree always 

higher than their in-degree, becoming the prime liquidity providers of the market. These banks held the highest 

average out-degree of the network between 2004 and 2008 (Figure 12), the most buoyant years in terms of the call 

market’s activity. The other entities that shared this role of liquidity providers were the DPBs, essentially between 

2012 and 2017. 

In the opposite side of the market, SFBs erected as the main borrowers of the network, displaying the largest 

average in-degree during nearly the whole period. NBFIs were the least connected nodes (in the context of this 

Total SOB DPB SFB NBFI SOB DPB SFB NBFI SOB DPB SFB NBFI

1 Jan-03 - Dec-03 4.7 2.6 5.0 6.0 2.2 0.6 2.2 3.8 0.3 1.9 2.8 2.3 1.9

1' Jan-04 - Jun-05 6.2 5.0 6.0 8.7 2.2 0.2 2.6 5.7 0.7 4.8 3.5 3.0 1.5

2 Jul-05 - Dec-07 9.5 10.0 9.8 12.8 3.7 1.7 4.7 8.3 1.4 8.3 5.1 4.4 2.3

3 Jan-09 - Feb-10 4.2 3.7 4.5 5.0 2.8 1.1 2.4 3.0 0.7 2.6 2.0 2.0 2.1

4 Mar-10 - Oct-11 6.6 5.6 7.8 6.8 4.3 2.0 4.1 4.1 1.2 3.6 3.7 2.8 3.1

5 Nov-11 - Nov-15 7.6 6.0 9.3 8.0 4.7 1.8 4.4 5.4 1.9 4.2 4.9 2.6 2.8

6 Dec-15 - Dec-17 7.5 6.1 8.5 8.0 5.1 1.7 3.7 5.4 2.8 4.4 4.7 2.6 2.3

Stage Date
Average total degree Average in-degree Average out-degree
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subsection, the least central), playing a more peripheral role in the network’s lattice. Most of the time they showed 

a higher average out-degree than in-degree (that is, those entities were more often lenders than borrowers), except 

for the last stage, when the opposite occurred. In fact, their average in-degree experienced a growing trend, which 

explains how NBFIs increased to some extent their centrality in the market over the years. 

Figure 12 also confirms that DPBs had a crucial role not only from the point of view of liquidity provision to the 

network but also regarding its absorption. That is, they reached a comparatively high average out-degree as well 

as in-degree, in relation with the other entities, during the whole period under consideration. 

Figure 12.a. Average out-degree of nodes, 
by type of entity 

 Figure 12.b. Average in-degree of nodes, 
by type of entity 

 

 

 
Source: BBVA Research  Source: BBVA Research 

When the focus is changed to analyze node strength (Figure 13), conclusions do not differ significantly, but some 

key peculiarities deserve to be highlighted. During the most dynamic moments in terms of network’s activity, 

between 2005 and 2007, the main players of the market were fundamentally the SOBs, as lenders, and the SFBs, 

as borrowers. DPBs also performed a key role in both sides of the market (but with less clear predominance), while 

NBFIs displayed a substantially higher out-strength than in-strength. 

With the outbreak of the global crisis, the average node strength of the system collapsed, from levels of ARS 

917±140 million to nearly 260±43 million in 2009. SOBs were the group of banks which experienced the most 

notorious decline. Since then, no group consolidated as the most central from the out-strength perspective. Despite 

the fact that since 2010 the nodes in the network have recovered an average total strength of ARS 370±60 million 

and remained around those levels until 2017, no group emerged visibly as the most central liquidity provider in the 

market. That role was alternately shared by the different types of banks. 

A phenomenon that deserves to be highlighted is the increase of NBFI’s out-strength during the recovery from the 

crisis, as they boosted significantly the market liquidity in 2009 and 2010. This more central role of NBFIs in those 

years explains at least partially the rise in the network’s assortativity (or “homophily”) in the fourth stage of the 

period (Figure 10). During the post-crisis recovery of 2010 and 2011, monthly graphs appeared to be more 

assortative, as NBFIs abandoned to some extent their usual peripheral role and were more thoroughly 

interconnected with the core of the network. 
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Figure 13.a. Monthly node out-strength, by type of 
entity (ARS million, constant prices of 2017) 

 Figure 13.b. Monthly node in-strength, by type of 
entity (ARS million, constant prices of 2017) 

 

 

 
Source: BBVA Research  Source: BBVA Research 

Regarding the average in-strength, SFBs were undoubtedly the most central group, as they were the main 

borrowers in almost every month. Their prominence also experienced a decay during the crisis, but nonetheless 

they bounced back relatively fast and kept their hegemonic role (from the in-strength perspective) during the rest of 

the following years. On the other hand, when the average strength of DPBs is considered, the conclusions about 

their centrality drawn from the analysis of their average degree somehow weaken, but these banks anyway 

constituted the second main group of borrowers most of the time. It is also remarkable the change in the NBFIs’ 

behavior in 2016-17, when their in-strength centrality grew exponentially, to levels that made them effectively 

compete with the SFBs for the absorption of the market liquidity. This phenomenon may explain, to some extent, 

the increase in the network’s disassortativity during those two years, as well as the simultaneous reduction in the 

average clustering coefficient. 

In order to study the concentration of lending and borrowing by individual nodes in the market, Figure 14 presents 

the evolution of the corresponding Herfindahl-Hirschman Indices (HHI), normalized according to the number of 

network’s participants in each moment13.  

As it can be inferred from the examination of the average node strength, the network was substantially more 

concentrated between 2003 and 2009 than in the succeeding years, more markedly in the case of borrowers -

HHI*(B)- than in the case of lenders -HHI*(L)-. Both HHIs fell (i.e., the market reduced its concentration levels) over 

the years. Starting with values at an average of around 10% in 2003-04, after the global crisis those indices 

reached a plateau until 2017, showing average figures of approximately 4.6% for lenders and 4.8% for borrowers.  

However, neither of the indices displayed an alarming concentration (in absolute levels) of market’s liquidity flows. 

The network was not significantly concentrated in a few hands, neither on the lenders’ nor on the borrowers’ side, 

although the HHI always remained at levels above those that would denote “perfect” competition. 

 

 
13: When the index is near 100%, it indicates complete concentration of liquidity in one entity’s hands, and a value approaching zero represents 

a perfectly equitable distribution of the market shares among the banks, regarding the allocation or absorption of liquidity in the network. 
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Figure 14. Herfindahl-Hirschman Index, normalized by the number of entities participating in the market 

 
Source: BBVA Research 

Another approach to study the network’s concentration is based on the analysis of the “net liquidity positions” of the 

entities in the market. They are the result of netting out all the gross flows traded by each entity during a whole 

month. That procedure allows us to elucidate how many banks were net lenders (i.e., input liquidity into the system) 

and how many were net borrowers in the network (i.e., captured liquidity from it) during a specific month. In 91% of 

the months analyzed there was a higher number of net lenders than net borrowers (Figure 15), which reflects that 

the former were less concentrated than the latter. Notwithstanding, the quantity of net lenders never exceeded the 

67.5% of total entities, implying that the network always remained rather equally distributed between liquidity 

suppliers and demanders. 

Figure 15. Distribution of entities according to their monthly net liquidity positions in the market 
(% of total active nodes in monthly networks) 

 
Source: BBVA Research 

The decline in the network’s concentration was accompanied by an increasing share of entities that began to act as 

liquidity "intermediaries", meaning that they not only lent but also borrowed short-term funds in a same month 
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(Figure 16). In 2003-04, only 32% of the nodes were intermediaries in this sense. That number grew to an average 

of 51.8% in 2017. In other terms, towards the end of the time period analyzed, nearly half of the institutions 

participating in the interbank market acted occasionally as both supplier and demander of liquid funds during a 

certain month. This behavior points out the value that the call market entails for Argentine financial entities, as it 

significantly facilitates their liquidity management. 

Figure 16. Node classification, according to their role in the network 

 
Source: BBVA Research 

As a complementary approach, with the aim of analyzing the average centralization of the network as a whole, 

Figure 17 presents three additional metrics based on the concepts of closeness, betweenness and eigenvector 

centrality. Each centrality measure was computed taking into account the undirected graphs, with the objective of 

evaluating the average centrality of the nodes in the network in absolute terms, interpreting it as a complex of 

stable relationships among financial entities. 

The different centrality measures provide rather divergent perspectives. One remarkable feature shared by them is 

that all seem to experience a sort of “break” in their paths after the global financial crisis of 2008. The evolution of 

the average total strength of the nodes illustrates the magnitude of the change experienced by the network’s 

structure that year. This indicator registered a strong rise in the years 2005-2007, followed by a collapse with the 

2008 crisis, from which it would only partially recover in 2010, when it reached the values that would then remain 

quite stable until the end of the period. 

Betweenness centrality quantifies the average node centrality according to how many shortest paths go through 

each node, with respect to the existing total number of shortest paths in the network. When the network expanded 

between 2003 and 2007, this centrality measure decreased substantially, reaching its minimum level during the 

month in which the network showed the largest size of the whole period (August 2007). With the outbreak of the 

global crisis, the average betweenness grew sharply, in consonance with the simultaneous contraction of the 

network. This centrality measure displays a rather opposite behavior to that of the average total strength, since, 

after that peak in 2009, betweenness shrank again in 2010 and stabilized thereafter, keeping a mild upward trend. 

In summary, when the network grew, betweenness centrality reacted by falling, which could be interpreted as a 

result of the increase in the number of transactions carried out by a higher number of banks. This situation was 

reversed with the crisis, when the network shrank and got back to the average centrality levels of 2004, although it 
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happened with more entities involved in the market, a fact that highlights even more the preponderance of the 

effect outlined before. After the subsequent stabilization, the indicator remained fairly stable, in line with the 

majority of the other topological measures of the graph. Though it is important to notice that the Argentine interbank 

network does not display high centrality levels compared with other networks, these “mirror” movements with 

respect to the size and dynamism of the market constitute a useful element to consider when trying to forecast the 

behavior of the network under different contexts. 

Figure 17. Average total strength of active nodes and centrality measures for monthly networks 

 
Note: all centrality measures are normalized according to the size of the network in each moment, except for the total average strength, which is computed in 

constant pesos of 2017. The three centrality measures are calculated in such a way that an increase represents higher average centrality, and vice versa. 

Regarding the evolution of the average closeness centrality, a visible break is also detected before and after the 

crisis. Between 2003 and 2008 it remained at very low and stable levels, but then it started to show a noticeable 

upward trend, almost tripling its initial values by the year 2017. The latter behavior coexists with the already 

descripted stability of the other topological features of the network, which seems to imply that entities tend to get 

“closer” to each other in phases of relative stagnation of the network’s structure. 
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The average eigenvector centrality displayed a much more erratic behavior during the whole period than the other 

centrality measures, with just a subtle resemblance with the path of closeness centrality. Along the final years of 

the sample, this type of centrality experienced an incipient increase, which may be explained by the enhanced 

connectivity of NBFIs in those years (see, for example, Figure 13). 

In brief, these three metrics offer different approaches to study the average centrality of the graph. While average 

betweenness declined with the boom of the network and increased with the crisis, the opposite occurred in the 

case of closeness (and, although less notably, in the case of eigenvector centrality too). Nonetheless, all of them 

concur that the average centrality of the network has experienced an, at least slight, upward trend since 2010, a 

lapse characterized by a relative stability of most of the other topological measures. 

6.4. Degree distribution 

In the literature on this topic, the usual starting point to analyze the degree distribution of a graph consists in a 

visual exploration of their Complementary Cumulative Distribution Functions (CCDFs). Figure 18 shows the CCDFs 

of total degrees, in-degrees and out-degrees of nodes in the average network of December 2016. This particular 

month was chosen as a representative example because the topological features of its graph are very close to the 

global average of monthly networks over the whole period. 

The degree distribution (of total degrees, as well as of both out- and in-degrees) shows “heavier” tails than a 

Poisson, which is typically the distribution observed in the context of a random network. Lognormal distribution 

appears to be the best fit to most of the observations. However, in the case of out-degrees the evidence also 

provides some support to the hypothesis of a Power Law behavior in the tails of their distribution. In any case, 

these two latter distributions are both usually said to be “heavy-tailed”, which means that the emergence of extreme 

events, that is, very far away from the mean, are significantly more likely to occur than in the context of normal or 

exponential distributions (or Poisson in the discrete case). In the specific case of the interbank network under 

analysis, this preliminary result indicates that there is a large number of banks with few links, coexisting with a 

small number of highly interconnected entities, key to the smooth functioning of the network. 
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Figure 18. Complementary Cumulative Distribution Functions of nodes’ degrees 

 
Note: Based on the degree distribution of the December 2016 network. This particular network is one of the most similar to the global average of monthly 

networks over the period (67 nodes, 258 edges). Axis are in log-scale. 
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After applying the methodology introduced by Clauset et al. (2009) to define if the lognormal distribution fits 

statistically to the monthly empirical networks (and therefore estimated the corresponding total of 180 p-values), it 

results that in 90% of the cases the null hypothesis of lognormal fit is not rejected for the total degree distribution, 

considering a type 1 error probability of 10%. Reducing this latter threshold to 5%, the null hypothesis is not 

rejected in 95% of the months. Those percentages of non-rejection are 88.3% and 92.8%, respectively, for the in-

degree distribution, and 91.1% and 95.6% in the case of out-degrees (Table 7). Thus, in almost every month the 

null hypothesis of lognormal fit is held true, more strongly in the case of the out-degree distribution.  

Table 7. Percentage of monthly networks with a degree distribution that does not reject the lognormal 
hypothesis 

 
Note: This Table includes all the months of the year 2008 (they were not included in other Tables, given that they belong to a transition lapse between two different 

network structures, so their inclusion to compute the average topological measures of Stage 3 would dilute the resulting effects derived from the crisis). Here, those 

months are included with the purpose of examining if the degree distribution of the network changed during each month of the whole period. 

The lower bound values of the distribution (𝑥𝑚𝑖𝑛), needed to estimate the other parameters, turned out to be low, 

which means that the number of observations removed to perform the estimation is relatively small (compared with 

the total range of the variable). In fact, the minimum cut-off in the case of total degrees is 4.4 in average (versus an 

individual maximum number of 36 degrees), 3.2 for the in-degrees (versus a maximum value of 27), and 2.7 for the 

out-degrees (versus a maximum of 23). It is important to notice again that these are relatively small networks 

compared with other analyzed by other sciences (e.g., biology, physics, linguistics, social networks, etc., where 

nodes and edges can easily reach thousands or even millions). Hence, the computations in this paper are clearly 

subject to potential small-sample biases and other problematic issues related to the lack of abundant observations. 

Two fundamental parameters are needed to specify a Lognormal distribution: the mean (which defines the scale of 

the distribution) and the standard deviation (which defines the shape). The estimates of the former parameter 

follow a similar evolution to that of the network’s average degree. The mean for the lognormal distribution of total 

degrees is 1.9±0.51, it is 1.7±0.51 for in-degrees and 1.3±0.71 for out-degrees. 

When compared with other empirical distributions that can be fitted by a Lognormal14, these parameters are in line 

with those found in the context of social sciences, economics and linguistics. They are also similar to the parameters 

observed in many studies on medicine or geology, while the standard deviation found here for the Argentine interbank 

network is significantly lower than those found in many studies about ecological or environmental topics.  

 
14: See Limpert, Stahel, and Abbt (2001) for a survey of studies that found empirical lognormal distributions in the context of several sciences. 
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Average 
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p-value > 

0.1

p-value > 

0.05

Average 

Xmin

p-value > 

0.1

p-value > 

0.05

Average 

Xmin

1 Jan-03 - Jun-05 90.0% 93.3% 2.9 93.3% 93.3% 2.7 93.3% 100.0% 2.0

2 Jul-05 - Dec-07 90.0% 93.3% 6.3 96.7% 96.7% 2.7 93.3% 93.3% 4.3

3 Jan-08 - Feb-10 92.3% 92.3% 3.1 88.5% 88.5% 2.7 88.5% 88.5% 1.5

4 Mar-10 - Oct-11 90.0% 100.0% 3.6 80.0% 90.0% 3.9 85.0% 90.0% 2.9

5 Nov-11 - Nov-15 89.8% 98.0% 4.5 85.7% 91.8% 4.0 89.8% 95.9% 2.9

6 Dec-15 - Dec-17 88.0% 92.0% 5.0 84.0% 88.0% 3.4 96.0% 100.0% 2.4

90.0% 95.0% 4.4 88.3% 92.8% 3.2 91.1% 95.6% 2.7

Out-degree

Jan-03 - Dec-17

Stage Date

Total degree In-degree
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Table 8. Estimation of Lognormal parameters of monthly networks’ degree distributions 

 
Note: The Table shows the average value of the parameters in each stage, based on the monthly estimates. 

With the purpose of comparing the Lognormal goodness-of-fit with that of other distributions usually studied in 

specialized literature, the log-likelihood derived from the Lognormal hypothesis is contrasted with the resulting log-

likelihood of a Poisson and a Power Law fitted to the observations (Table 9).  

Table 9. Percentage of monthly networks in which the log-likelihood of the lognormal fit is higher than the 
log-likelihood derived from fitting other distributions 

 
Source: BBVA Research 

Applying the same optimal 𝑥𝑚𝑖𝑛 that emerges from a Power-Law fit to compute both log-likelihoods, in 98.3% of the 

cases the log-likelihood derived from the Lognormal fit to the total degree distributions is higher than the log-

likelihood derived from the Power Law fit. This result also arises in 99.4% of months for the in-degree distributions 

and in 100% of the monthly out-degree distributions. From an analogous procedure, it is concluded that the 

Lognormal distribution describes the data better than a Poisson in 96.7% of months in the case of total degree 

distributions, in 96.1% of the in-degree distributions and in 97.2% of out-degree distributions. 

In summary, the Lognormal distribution, with the parameters shown in Table 8, is the one that best fits in general to 

the empirical data of the interbank loans network, with just a few exceptions. After a detailed examination of these 

exceptions (which represent only a 10% of total cases), no clear regularities emerge that could systematically 

explain the rejections to the Lognormal hypothesis. The rejection of this hypothesis is not concentrated in any of 

the time stages of the period. In addition, those exceptional networks do not show any peculiar topological feature.  

In conclusion, this heavy-tailed distribution seems to be the most suitable to describe the histogram of total 

degrees, as well as in- and out-degrees. This phenomenon has critical implications when assessing the probability 

Mean Std. Dev. CV Mean Std. Dev. CV Mean Std. Dev. CV

1 Jan-03 - Jun-05 1.6 0.7 43% 1.4 0.8 57% 0.9 0.8 85%

2 Jul-05 - Dec-07 2.3 0.6 26% 1.9 0.8 41% 1.7 0.6 34%

3 Jan-08 - Feb-10 1.7 0.6 35% 1.4 0.6 46% 0.6 0.7 124%

4 Mar-10 - Oct-11 1.8 0.6 33% 1.7 0.6 37% 1.3 0.6 46%

5 Nov-11 - Nov-15 2.1 0.6 28% 1.8 0.7 37% 1.4 0.7 50%

6 Dec-15 - Dec-17 2.0 0.6 28% 1.8 0.6 35% 1.3 0.7 53%

1.9 0.6 31% 1.7 0.7 42% 1.3 0.7 54%

Out-degree

Jan-03 - Dec-17

Stage Date
Total degree In-degree

Log-likelihood Lognormal > Power Law Log-likelihood Lognormal > Poisson

Total degree 98.3% 96.7%

In-degree 99.4% 96.1%

Out-degree 100.0% 97.2%
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of disruptive events and financial fragility, so it turns out to be a key input to take into consideration for the design of 

macroprudential and banking regulation. 

7. Effects of node centrality on bilateral interest rates 

With the aim of measuring the potential effects derived from node centrality on the bilateral interest rates that banks 

are able to agree in the call market, a set of regressions were carried out applying OLS (with Heteroskedasticity-

Robust standard errors). The dependent variable in this analysis is the interest rate differential between the 

bilateral rate agreed in each operation and the average rate settled in the market the same day. This differential is 

defined as a percentage of the average market rate. Formally, the main goal is to estimate the impact of node 𝑖’s 

centrality (measured by different indicators) on the following variable:   

(6.1)                                      𝑟 =  
𝑐𝑎𝑙𝑙𝑖𝑗𝑡 − 𝑐𝑎𝑙𝑙𝑡

𝑐𝑎𝑙𝑙𝑡
 

Where: 

- 𝑐𝑎𝑙𝑙𝑖𝑗𝑡: Interest rate agreed between entity 𝑖 and entity 𝑗 on day 𝑡. 

- 𝑐𝑎𝑙𝑙𝑡: Average interest rate settled in the market, defined as the volume-weighted average interest rate of all 

the transactions on day 𝑡. 

This specific definition of the dependent variable (as a percentage of the market rate, and not in basis points, as it 

is the case, for example, in Bech & Atalay, 2008) is useful to avoid biases derived from the substantial volatility 

experienced by the average call rate during the period analyzed (see Figure 1), and allows to focus exclusively on 

the relative spread between the bilateral interest rates settled by financial entities in each one of their particular 

transactions and the average market rate. 

On that basis, nine different regressions were computed using the following generic form:  

  (6.2)         𝑟 =  𝛼 + 𝛽11(𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 > 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟) +

𝛽21(𝑎𝑠𝑠𝑒𝑡𝑠 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 > 𝑎𝑠𝑠𝑒𝑡𝑠 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟) + 𝛾1𝐷𝑡𝑦𝑝𝑒 𝑜𝑓 𝑙𝑒𝑛𝑑𝑒𝑟 +

𝛾2𝐷𝑡𝑦𝑝𝑒 𝑜𝑓 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑟 + 𝛾3𝑋 + 𝜀 

 

Where: 

- 𝛽1 is the coefficient of interest in our analysis, as it quantifies the effect on bilateral interest rates explained 

by the fact that the lender is more central than the borrower. On the other hand, 𝛽2 measures the impact 

derived from the fact that the lender has a bigger size than its counterparty (in terms of their assets or their 

deposits). These effects are estimated thanks to the inclusion of binary variables that, in the case of the 

variable associated to 𝛽1, take the value 1 when the lender is more central that the borrower, or, in the case 

of 𝛽2, when the former has a bigger balance sheet than the latter; and take the value 0 when the opposite 

happens. 

- The 𝐷𝑖 are vectors of dummies included to take into account the type of entities involved in the transaction. 

That is, to measure the difference in interest rates when state-owned banks or private entities (domestic or 
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foreign) or NBFIs are the lenders/borrowers of the loan. 𝛾1 and 𝛾2 are the vectors of coefficients associated 

to this set of control variables. 

- 𝑋 stands for a vector of control variables included to consider specific features of each loan in particular. For 

instance, the amount of money (in real terms), maturity in calendar days (as all the loans considered have a 

maturity of 1 working day), etc. 

- 𝛼 is the constant, and, as such, it contains all the base categories of the dummy variables included in the 

regression. 

Table 10 shows the resulting estimates for nine regressions based on the generic form (6.2), combining different 

centrality measures and control variables. In the first place it is worth noting that including individually any of the 

five centrality measures computed here (columns 1-5 of Table 10), in all cases their associated coefficient is 

positive and statistically significant (with p-values lower than 1%). This implies that a lender that is more central in 

the network (defining this concept by any of the measures discussed here) than its counterparty tends to settle a 

higher interest rate than the market average of the day. 

The most prominent effect is derived from exhibiting a higher degree centrality (column 1 in Table 10), in which 

case the lender is able to settle, on average, an interest rate 1.32% above the market call rate. A similar effect, 

though slightly lower, is caused by having a higher centrality measured in terms of average strength: it allows the 

entities to lend at a rate 1.11% above the market average (column 5). The other three metrics (closeness, 

betweenness and eigenvector centrality) appear to be less effective, with an impact of nearly half of the effects 

observed in the first two cases. Anyway, they show a positive impact too, statistically and economically significant 

(columns 2, 3 and 4). 

Before analyzing the outcomes of combining different centrality measures in the same specification, it is worth 

reviewing first the other coefficients, which tend to remain stable in all the nine columns of Table 10.  

Regarding the type of lender entity, DPBs (the base category of the corresponding dummy) are those who provide 

funds at the highest interest rates, while NBFIs, on average, lend money at the lowest rates of the market. From 

the perspective of the borrowers, NBFIs tend to obtain the most expensive loans, followed by SOBs in the second 

place, while SFBs tend to borrow at the most convenient rates. Both the order of the groups of entities as well as 

the magnitude of the coefficients remain stable in all specifications. It is relevant to control for the type of entity 

involved in each transaction in order to take into account the effects derived from the type of business that each 

group runs, which is qualitatively different in each case. All the coefficients computed for these variables are 

statistically significant (with p-values below 1%) and their sizes reflect the differences in the businesses that each 

entity conducts in the financial system. 

When considering the specific characteristics of each loan, it turns out that none of the controls included have 

significant effects in economic terms. The maturity in calendar days does not show a statistically significant impact. 

The amount of the loan does exhibit a statistically significant impact, though economically negligible (less than 

0.001% of the market rate). The number of days until the end of the month (when the reserve maintenance period 

for banks ends) explains in some cases a negative and statistically significant effect (i.e., the farther the end of the 

month, the lower the rates asked by lenders), but it is also economically negligible. Something similar occurs in the 

case of the market call rate, which is associated to a negative coefficient (that is, the higher the market rate, the 

lower the differential between it and the bilateral rates), statistically significant, but it is below 0.2%, which makes it 

rather irrelevant in economic terms. 
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Table 10. Dependent variable: interest rate differential between bilateral rates and the average market rate 
of the day, as a percentage of the market rate (𝐫) 

 
* Significant with a p-value<0.1. ** Significant with a p-value<0.01. Note: Each column shows a set of coefficients estimated according to a particular specification 

based on (6.2). Standard deviations are displayed in parenthesis. The R^2 was adjusted according to the number of regressors included. 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Centrality Measures

Lender > Borrower, Degree 0.0132** 0.0167** 0.0171**

(0.0007) (0.0011) (0.0011)

Lender > Borrower, Closeness  0.0066** 0.0052** 0.0050** 0.0042** 0.0049**

(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Betweenness 0.0044** -0.0007 -0.0029** -0.0003 0.0001

(0.0006) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Eigenvector 0.0069** 0.0052** -0.0053** -0.0080** -0.0011

(0.0006) (0.0007) (0.0010) (0.0010) (0.0008)

Lender > Borrower, Strength 0.0111** 0.0107**

(0.0007) (0.0008)

Size of financial entity

Lender > Borrower, Assets 0.0409** 0.0441** 0.0441** 0.0430** 0.0398** 0.0431** 0.0412** 0.0411**

(0.0008) (0.0007) (0.0007) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Lender > Borrower, Deposits 0.0445**

(0.0007)

Lender > Borrower, Liquidity -0.0024** -0.0027** -0.0031** -0.0028** -0.0028** -0.0025** -0.0023** -0.0004 -0.0033**

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

Type of Lender

State-Owned Bank -0.0135** -0.0129** -0.0127** -0.0133** -0.0138** -0.0132** -0.0134** -0.0150** -0.0127**

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Subsidiary of Foreign Bank -0.0279** -0.0267** -0.0277** -0.0273** -0.0281** -0.0267** -0.0274** -0.0269** -0.0306**

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)

Non-Bank Financial Institution -0.0388** -0.0382** -0.0390** -0.0389** -0.0397** -0.0381** -0.0383** -0.0302** -0.0378**

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

Type of Borrower

Non-Bank Financial Institution 0.1628** 0.1671** 0.1669** 0.1658** 0.1644** 0.1657** 0.1631** 0.1680** 0.1699**

(0.0012) (0.0011) (0.0011) (0.0011) (0.0011) (0.0011) (0.0012) (0.0011) (0.0011)

State-Owned Bank 0.0530** 0.0579** 0.0576** 0.0564** 0.0544** 0.0563** 0.0534** 0.0622** 0.0608**

(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017)

Domestic Private Bank 0.0496** 0.0518** 0.0508** 0.0503** 0.0477** 0.0512** 0.0504** 0.0518** 0.0528**

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

Loan characteristics

Call rate, market average -0.0017** -0.0016** -0.0016** -0.0016** -0.0017** -0.0016** -0.0017** -0.0005** -0.0005**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001)

Maturity 0.000005 0.000008

(0.0003) (0.0003)

Amount 0.000005* 0.000005* 0.0000 -0.00001**

(0.0000) (0.0000) (0.0000) (0.0000)

Days until end of the month 0.0000 0.0000 -0.0001* -0.0001*

(0.0000) (0.0000) (0.0000) (0.0000)

Time dummies

Monthly Yes Yes Yes Yes Yes Yes Yes Yes Yes

Annual No No No No No No No Yes Yes

Constant -0.0314** -0.0321** -0.0300** -0.0308** -0.0299** -0.0328** -0.0320** -0.0648** -0.0525**

Adjusted R² 0.1668 0.1661 0.1659 0.1661 0.1665 0.1663 0.1670 0.1908 0.1875

Coefficients
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On average, a lender with more assets that its counterparty is able to settle an interest rate between 4% and 4.4% 

higher than the market rate for a loan. This coefficient is stable and significant across all specifications, both in 

statistical and economic terms. If, instead, the size of the entities is measured from the other side of their balance 

sheets, that means, considering the volume of their deposits, the associated coefficient remains practically 

unchanged. This result is useful to assess the robustness of the estimation of this particular parameter (regression 

8 in Table 10). Overall, these results are in line with those found by similar empirical studies, such as Anastasi et al. 

(2010), Akram and Christophersen (2010) for the interbank market of Norway, and Bräuning and Fecht (2012) for 

the German case.  

Individual liquidity levels also affect bilateral rates. This effect is statistically significant in all the specifications in 

which the assets are included as a proxy of the size of the entity, and exhibits values between -0.2% and -0.3%. 

That is, if the lender has higher liquidity levels than the borrower, the settled rate of an operation between them 

would tend to be 0.2%-0.3% lower than the average market rate. But if this variable is included as a regressor 

jointly with the deposits (instead of the assets), the collinearity between these two variables turns the coefficient 

associated to liquidity non-significant to explain 𝑟. 

Specifications 6, 7, 8 and 9 regress 𝑟 on different combinations of centrality measures, with the aim of examining 

their partial effects and potential complementarities. A first important result in this sense is that the coefficient 

associated to betweenness centrality turns out to be unstable and many times non-significant when included jointly 

with other centrality measures. Something similar occurs in the case of eigenvector centrality. In contrast, 

closeness centrality always appears stable and significant, at around 0.5%, regardless of the combination of 

variables included. 

Degree and strength centrality proved to be the most relevant to explain interest rates differentials. In the first case, 

its associated coefficient even increases when it is included together with other metrics, to a figure near to 1.7%. 

This value is both statistically and economically significant. Strength centrality remains around 1.1%, also stable 

and significant even upon changes in the specification. 

In conclusion, the evidence seems to support the idea that node centrality proves to be a relevant factor at the time 

of negotiating a more convenient rate in the call market, even after taking into account the effects derived from the 

size of the entity, short-term liquidity levels, differences in the type of businesses of banks and controlling for 

characteristics of the loan, such as the maturity or the amount, among other factors. The centrality measures with 

the largest impact are those based on degree and strength, with closeness centrality in the second place. These 

results indicate that it is profitable for the entities to establish a higher number of interconnections in the network in 

order to become more central, given that this behavior contributes to the achievement of better interest rates 

compared with the market average. In a market like this, which is not too concentrated and which is prone to show 

relatively high and volatile nominal interest rates, securing bilateral rates close to 2% higher than the market 

average constitutes a substantial spread that improves the financial revenues of the entities. 

8. Concluding remarks 

This paper presents the first comprehensive network analysis of the topological structure of the Argentine 

unsecured interbank market, commonly known as call market. It represents one of the most relevant places where 

financial entities conduct, on a daily basis, the management of their liquidity positions, and, because of that, the 

interest rates settled in this market provide a key reference for the determination of the other longer-term rates of 

the economy. There are not many papers in general about this particular Argentine market, so the present piece of 
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research is intended to enrich the current understanding of its structural features and, though tangentially, of the 

changes and fluctuations it underwent over the years under analysis. 

In general terms, the Argentine interbank network is characterized by its relatively modest size, both in terms of its 

number of nodes and edges. It is not the smallest interbank network analyzed so far in the world, but its scale is not 

comparable to the largest empirical networks of other countries. The Argentine network exhibits low density, as is 

usual in these types of graphs, and a reciprocity nearly always above the levels of a random network (with the 

same degree of completeness). The average distance between entities is quite short, with a mean lower than 3.  

The network is prominently disassortative, which means that highly interconnected nodes tend to establish more 

links with low-degree nodes. This behavior is common in absolutely all the empirical interbank networks studied 

over the world. But it is worth noting that in the case of Argentina the graph’s disassortativity decreased after the 

global crisis, compared with the levels witnessed between 2003 and 2007. Additionally, the network displays a 

higher clustering coefficient than a random network, in line with the interbank loans networks of other countries. 

In the Appendix it can be found a Table which compares the topological metrics of the different empirical interbank 

networks analyzed so far around the world, to the best of our knowledge, using methodological techniques similar 

to the ones applied here. This survey is useful to trace the main contrasts and similarities between the abundant 

and heterogeneous studies within this literature in constant expansion. For instance, it can be inferred from the 

survey that the networks based on payment systems and those based on balance sheet exposures tend to be 

bigger and denser than interbank loans networks. Additionally, they often show, on average, higher clustering 

coefficients than the latter. As part of a future research agenda, a cross-country regression analysis constitutes a 

potential enriching exercise that could be performed on the basis of this type of information. 

When focusing on the time dynamics of the Argentine case, it is possible to note that there is a certain 

correspondence between the movements in the size of the network and the economic activity in the country. On 

the other hand, it was found that the number of edges reacts with a positive and high elasticity to changes in the 

number of nodes in the network (Figure 7). This finding contradicts many theoretical models that assume a 

constant average degree in networks that grow in size over time. 

Between 2003 and 2007 the Argentine network grew sharply, according to all of its topological metrics. However, 

the subsequent outbreak of the global crisis in 2008 triggered a dramatic collapse. The graph’s density experienced 

a drastic decline, reaching its minimum level in the series during the beginnings of 2009. Simultaneously, both the 

clustering and reciprocity coefficients decreased to levels comparable to those of a random network, as 

consequence of the significant contraction of the number of active edges in the market. 

Once the crisis was left behind, all the structural indicators recovered swiftly in 2010-11 and they stabilized around 

those levels thereafter, until the end of the period under analysis. It is important to clarify that the 2010-11 recovery 

was qualitatively different from the growth of 2003-07. In the years after the global crisis, assortativity coefficients 

became less negative and the entities adopted an unusually high reciprocity, both phenomena that had not been 

evidenced during the previous expansionary phase. During the stage with the strictest FX controls (2011-15), the 

network remained stable, in line with the economic stagnation that has prevailed in the country since then, 

displaying topological indicators that did not experience significant modifications then in 2016-17. In these last 

years, only incipient changes in the trends of some metrics can be perceived, but not yet enough unambiguous to 

extract definite conclusions.  

The main providers of liquidity in the network were SOBs (more clearly between 2004 and 2008) and DPBs. The 

latter group of banks also performed a more influential role as intermediaries than the former. That is, they 

constantly displayed a high number of both out- and in-degrees, acting, in average, as the most central entities of 
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the market. SFBs represented the major liquidity borrowers throughout the period, while NBFIs always played a 

peripheral role in the network, switching roles between being net lenders or net borrowers alternatively over the 

years, and turning more clearly into liquidity borrowers during 2016 and 2017. 

Regarding the degree distribution of the network, the evidence seems to support consistently the hypothesis that 

total degrees, in-degrees and out-degrees distributions fit better to a Lognormal than to a Power Law or to a 

Poisson. The most important implication of this finding is that those degree distributions seem to be heavy-tailed, 

so they would not be correctly characterized by a random graph. This means that a narrow group of highly 

connected entities coexists with a large number of low-degree entities. From a systemic risk perspective, this fact 

implies that the network tends to be “robust-yet-fragile”, in the sense that it is resilient to random failures of its 

nodes, but it could be very vulnerable when facing directed attacks to the most central banks. This constitutes a 

key result to consider when designing macroprudential policies, given that it highlights the relevance of a rigorous 

detection of the most central agents, whose failures can potentially disrupt the systemic stability of the entire 

network.  

The topological characterization presented in this paper posits solid empirical foundations to carry out theoretical 

exercises and simulations of shocks, both particularly for the Argentine network and for analogous markets in 

general of similar countries (i.e., with not very developed financial systems). The reported results are valuable to 

know more precisely to what extent the existing theoretical models about financial networks, contagion, cascade 

effects, etc. are applicable to the Argentine financial markets, and therefore to choose more adequately those that 

best fit to the Argentine case.  

Complementarily, the effects of different node centrality measures on bilateral interest rates were examined by 

means of an econometric analysis, identifying a positive and significant impact, both in statistical and in economic 

terms. That is, central entities in the network tend to settle more convenient bilateral interest rates in their 

operations in the call market. Even controlling for the size of the entities (measured according to their assets or 

deposits), their liquidity levels, type of business, type of entity, characteristics of the loan granted (maturity, amount, 

etc.), the centrality displayed by a node in the graph explains a non-trivial effect on its capability to lend at a higher 

interest rate and borrowing funds at a lower cost. The most relevant centrality measures were those based on the 

degree and on the strength, explaining a rate differential between 1.1% and 1.7% with respect to the average 

market rate. In the second place, closeness centrality showed a stable and significant effect of nearly 0.5%. 

These results highlight the relevance of taking account of the interconnectedness among financial entities and its 

evolution over time, both when examining the financial system from an aggregate perspective and also when 

approaching the banking business from a micro-level or entrepreneurial point of view. Considering the high 

domestic interest rates witnessed in Argentina and their volatility, profiting those rate differentials with respect to 

the average market rate on a daily basis constitutes a non-negligible source of revenues. These effects become 

even more relevant in a context of a BCRA focused on monetary aggregates to conduct monetary policy, as this 

policy regime tends to accentuate interest rate volatility (compared, for example, with a framework based on the 

determination of a certain monetary policy rate to manage the monetary conditions of the economy). 

Given that very few studies about the Argentine call market, in particular, and about the different local financial 

networks, in general, have been carried out, the future research agenda is very broad. For instance, an enriching 

analysis would consist in performing simulations of the network’s response when facing various shocks of different 

sources and intensities, and then evaluating potential structural changes that could be triggered by them. Also, it 

would be insightful to analyze more deeply specific stress events (particular days, weeks, or months of the 

Argentine history) to shed light on the dynamics of the graphs during those moments, detecting regularities or 

stylized facts that might be useful to strengthen the local systemic stability. Other studies could be based on other 
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domestic networks, such as the payment system, for which the necessary data is not available yet, or the cross-

holdings of financial assets by different agents. In this regard, more research is needed on domestic multilayer 

networks, an exponentially growing literature during recent years over the world (see, for example, Aldasoro & 

Alves, 2016). Finally, a dynamic analysis about the banks’ successive trading activity and repeated interactions 

between pairs of them (in the vein of the study of Kobayashi & Takaguchi, 2017) could also provide valuable 

insights for subsequent theoretical modelling. 

In conclusion, considering the interconnectedness among financial entities as a potential source of systemic risk 

leads to a fertile research agenda, with straightforward policy implications for financial regulators and monetary 

authorities. These topics emerged not only because of their key role during the global crisis of 2008-09, but also 

due to the increasing complexity of international financial systems. Thus, a thorough understanding of the potential 

externalities that can arise from those abundant interdependencies among financial (and non-financial) agents 

becomes a crucial task in a world where distances and reaction times are shortening at a striking pace. 
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10. Appendix: Main topological measures of empirical interbank networks 

 

 

 

 

Country Reference Period Data type Frequency N M1 Density Reciprocity Clustering2 Assortativity3
Average 

Distance

Degree 

distribution4

Interbank loans 55 69-83 2.6% - - -0.1375 - Rejects Power law

Other interbank    

money flows
55 784-804 26.9% - - -0.375 - Rejects Power law

Austria Boss et al.  (2004) 2000-2003
Balance sheet 

exposures
Quarterly 883 Max. entropy - - 0.12 ± 0.01 - 2.59 ± 0.02 Power law (α=2.01)

Brazil Cont et al.  (2013) 2007-2008
Balance sheet 

exposures
Irregular 592-597 1,200 - - 0.2 Disassortative 2.35-2.42 Power law (α=2.54)

Canada
Embree & Roberts 

(2009)
2004-2008 Payments Daily 14 - 69.2% ± 3.3% 89.3% ± 2.5% 0.84 ± 0.015 - 1.31 ± 0.03 -

Colombia (a)
Cepeda López 

(2008)
2006 Payments Daily 126 2,245 16.4% 34.2% 0.61 - 2.04

Power law (Out: 

α=3.06 /   In: α=3.24)

Colombia (b)
Machado et al. 

(2010)

2006 and 

2009
Payments Daily 125-137 6,843-9,400 42.8%-60.6% - - - 2.04-2.17 -

Interbank money 

market transactions
43.6 ± 4.1 75 ± 23 11.2% ± 5.8% 26.2% ± 5.5% 0.2 ± 0.1 - 2.9 ± 0.4 Exponential

Payments 89 ± 5.3 283 ± 41 8.3% ± 0.8% 22.8% ± 1.8% 0.5 ± 0.1 - 2.5 ± 0.1 Negative binomial

Estonia
Rendón de la Torre 

et al. (2016)
2014 Payments Yearly 16,613 43,375 13% - 0.183 -0.18 7.1 Power law (α=2.45)

EU Alves et al.  (2013) 2011
Balance sheet 

exposures
Yearly 54 1,737 60% 71% 0.84 -0.24 1.38 Power law (α=3.5)

Germany
Craig & von Peter 

(2014)
1999-2012

Balance sheet 

exposures
Quarterly 1,732 ± 85 20,081 ± 1,461 0.66% - - - - Rejects Poisson

Hungary Lublóy (2006) 2005 Payments Monthly 36 774 61% - - - - -

Australia Sokolov et al.  (2012) 2007 Daily

Denmark
Rørdam & Bech 

(2009)
2006 Daily
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Country Reference Period Data type Frequency N M1 Density Reciprocity Clustering2 Assortativity3
Average 

Distance

Degree 

distribution4

Italy (a) De Masi et al. (2006) 1999-2002

Interbank money 

market transactions 

(e-MID)

Daily 140 200 - - - Power law (α=2.3)

Italy (b) Iori et al.  (2008) 1999-2002

Interbank money 

market transactions 

(e-MID)

Daily 177-215 - - - - Disassortative -

Not scale-free, but 

heavier-tailed than a 

random network

Italy (c) Fricke & Lux (2015a) 1999-2010

Interbank money 

market transactions 

(e-MID)

Quarterly 120-200 - 17%-25% - - Disassortative - -

Italy (d) Fricke & Lux (2015b) 1999-2010

Interbank money 

market transactions 

(e-MID)

Daily and 

Quarterly
- - - - - - -

Negative binomial 

(daily)

Weibull (quarterly)

Italy (e) 
Kobayashi & 

Takaguchi (2017)
2000-2015

Interbank money 

market transactions 

(e-MID)

Daily 94 303 - - - - - -

Japan (a) Inaoka et al.  (2004) 2001-2002 Payments Monthly 354 1,727 2.76% - - - - Power law (α=2.1)

Japan (b)
Imakubo & Soejima 

(2010)

1997 and 

2005
Payments Monthly 444 and 354 1,383 and 1,709 1.4% and 2.7% - - Disassortative -

Power law (α=1.6-

3.4)

Balance sheet 

exposures
280 30% 80% - Disassortative 1.7 Power law (α=3.5)

Payments 471 40% 82% 0.7-0.85 Disassortative 1.5 Power law

Netherlands 

(a)
Pröpper et al.  (2008) 2005-2006 Payments Daily 129 ± 5 1,182 ± 61 7% 63% ± 2% 0.4 ± 0.02 Disassortative 2.0-2.5 -

Netherlands 

(b)

van Lelyveld & Veld 

(2014)
1998-2008

Balance sheet 

exposures
Quarterly 91-102 ~1,000 8% - - - -

Rejects Poisson and 

Power law

Secured money    

market transactions
161 - 10%-20% 5%-10% 0.05-0.2 - 2-4 -

Unsecured money 

market transactions
241 - 5% 20%-30% 0.1-0.3 - 2.6-3.7 -

27-40

Switzerland Schumacher (2017) 2005-2012 25-day periods

Mexico
Martínez-Jaramillo et 

al. (2012)
2005-2010 Daily

𝑘𝑛𝑛(𝑘) ∝ 𝑘
− .5c(𝑘) ∝ 𝑘− . 
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Notes: 1) maximum entropy refers to a method used to estimate some exposures for which no disaggregated data is available, so the number of links does not emerge directly 

from the observed information; 2) c(𝑘) accounts for the number of triangles a node of degree 𝑘 belongs to; 3) 𝑘𝑛𝑛(𝑘) is a function that describes the average degree 𝑘𝑛𝑛 of the 

neighbors of a node with degree 𝑘; 4) α refers to the exponent of a Power Law, while μ and σ represent the mean and standard deviation of a Lognormal distribution, respectively; 

5) Wetherilt et al. (2010) divided their analysis in two time phases: the first ranges from 18th May 2006 to 8th August 2007, and the second, from 9th August 2007 to 16th December 

2008, so their results are reported here separately for each phase. This Table only reports the metrics explicitly mentioned or expressed by the authors of each paper. 

 

 

  

Country Reference Period Data type Frequency N M1 Density Reciprocity Clustering2 Assortativity3
Average 

Distance

Degree 

distribution4

UK (a) Becher et al.  (2008) 2003 Payments Daily 337 989 0.90% - 0.23 - 2.4 -

UK (b)
Wetherilt et al. 

(2010)5 2006-2008
Interbank money 

market transactions
Daily 12-13 - 42.1%-38.5% 70.7%-68.9% - - - -

USA (a)
Soramäki et al. 

(2007)
2004 Payments Daily 5,086 ± 128 76,614 ± 6,151 0.3% ± 0.01% 21.5% ± 0.3% 0.53 ± 0.01 -0.31 2.6 ± 0.2 Power law (α=2.11)

USA (b) Bech & Atalay (2008) 1997-2006

Interbank money 

market transactions 

(federal funds)

Daily 470 ± 15 1,543 ± 72 0.70% ± 0.03% 6.5% ± 0.8%
In: 0.10

Out: 0.28
-0.06 to -0.28

In: 2.4 

Out: 2.7

Out: Power law (α=2 

± 0.05)

In: Negative binomial

Argentina This paper 2003-2017
Interbank money 

market transactions
Monthly 65 ± 6 237.5 ± 73.1 5.5% ± 1.1% 7.9% ± 3% 0.19 ± 0.05 -0.16 ± 0.09 2.8 ± 0.5

Lognormal (μ=1.9 / 

σ=0.6)
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