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2Investment in ”Real Time” & ”High Definition”: A Big Data approach

The Covid-19 crisis has reinforced the potential of Big Data tools for
Economic Analysis and Policymaking

The high uncertainty triggered by the Covid-19 crisis has stressed the need to monitor the evolution of
the economy in “real time”. These efforts have been materialized in several ways:

- Focusing on timely, alternative indicators: soft data surveys (particularly the Purchasing
Manager Indexes, PMIs) and other high frequency indicators like electricity production or chain

store sales released on daily or weekly basis.

- Developing higher frequency models: Some CBs have relied on this High Frequency indicators
to develop weekly activity tracker models such as the FED´WEI (Lewis, 2020) and the

Bundesbank WAI (Eraslan, S. and T. Götz, 2020).

- Developing New Big Data Indicators*: Focusing on daily aggregate information of banking
transactions to track consumption, employment , turnover, mobility (link to our BigData Project).

* Some of the Recent literature  on Big Data analysis Andersen, Hansen, Johannesen, & Sheridan (2020a), Andersen, Hansen, Johannesen, & Sheridan (2020b), Alexander & 
Karger (2020), Baker, Farrokhnia, Meyer, Pagel, & Yannelis (2020a), Baker, Farrokhnia, Meyer, Pagel, & Yannelis (2020b), Bounie, Camara, & Galbraith (2020), Chetty, 
Friedman, Hendren, & Stepner (2020), Chronopoulos, Lukas, & Wilson (2020), Cox, Ganong, Noel, Vavra, Wong, Farrell, & Greig (2020), Surico, Kanzig, & Hacioglu (2020).

https://www.bbvaresearch.com/en/special-section/charts/
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Through the analysis of the firm-to-firm transactions we extend our
project of national accounts in real time & high definition to Investment

The investment spending is done mostly by companies and, to a lesser extent, by individuals
We track investment payments through

Firms are classified by their NACE codes to identify their business 
activity (in line with the European statistical classification of sectors)

firm to firm transactionsindividual to firm transactions

Construction Investment

We approximate investment demand in one type of asset taking into account the aggregate flows or 
transactions done from any firm or individual to the sector which produce the fixed assets

Machinery Investment*Total Investment
*Machinery & Equipment, Media & ICT, Agriculture & Animals, Forestry, Durable Goods, Retail Trade, Textile & Clothing, Transportation and Shipping.
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The case of Turkey: Data and Representativeness
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Validation I: The Big Data investment index shows a high correlation
and co-movement with the oficial data 
TURKEY: GBBBVA BIG DATA INVESTMENT INDICES 
(28-day cum. YoY real )

Correlation coefficient: 0.88

Total Investment

Correlation coefficient: 0.84 Correlation coefficient: 0.77

Maquinery & Equipment Construction

Source: Own Calculations
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Validation II: The sincrony of BigData Investment with the Investment

Cycle is validated by the high correlation coefficients with HF proxies
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Garanti BBVA Big Data Construction Index 3m
Employment in Construction
Non-Metalic Mineral (Cement)
Turnover Building - rhs

BBVA BIG DATA INVESTMENT & HIGH FREQUENCY PROXIES  
(28-day cum. YoY real )

Maquinery & Equipment Construction
Correlation coefficient: 0.75

Correlation coefficient: 0.79

Correlation coefficient: 0.85

Correlation coefficient: 0.72

Correlation coefficient: 0.90

Source: Own Calculation
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Investment Big Data in an Nowcasting Model (DFM): The framework
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the forecast accuracy of these specifications with that of univariate benchmarks as well as of the model of
Bańbura and Rünstler (2010), who adopt the methodology of Giannone, Reichlin, and Small (2008) to the
case of euro area.

Giannone, Reichlin, and Small (2008) have proposed a factor model framework, which allows to deal with
“ragged edge” and exploit information from large data sets in a timely manner. They have applied it to
nowcasting of US GDP from a large number of monthly indicators. While Giannone, Reichlin, and Small
(2008) can handle the “ragged edge” problem, it is not straightforward to apply their methodology to
mixed frequency panels with series of different lengths or, in general, to any pattern of missing data.8 In
addition, as the estimation is based on principal components, it could be inefficient for small samples.

Other papers related to ours include Camacho and Perez-Quiros (2008) who obtain real-time estimates of
the euro area GDP from monthly indicators from a small scale model applying the mixed frequency factor
model approach of Mariano and Murasawa (2003). Schumacher and Breitung (2008) forecast German GDP
from large number of monthly indicators using the EM approach proposed by Stock and Watson (2002b).

and shows how to incorporate relevant accounting and temporary constraints. Angelini, Henry, and
Marcellino (2006) propose methodology for backdating and interpolation based on large cross-sections. In
contrast to theirs, our method exploits the dynamics of the data and is based on maximum likelihood
which allows for imposing restrictions and is more efficient for smaller cross-sections.

The paper is organized as follows. Section 2 presents the model, discusses the estimation and explains how
the news content can be extracted. Section 3 provides the results of the Monte Carlo experiment. Section
4 describes the empirical application. Section 5 concludes. The technical details and data description are
provided in the Appendix.

2 Econometric framework

Let yt = [y1,t, y2,t, . . . , yn,t]
′ , t = 1, . . . , T denote a stationary n-dimensional vector process standardised

to mean 0 and unit variance. We assume that yt admits the following factor model representation:

yt = Λft + εt , (1)

where ft is a r× 19 vector of (unobserved) common factors and εt = [ε1,t, ε2,t, . . . , εn,t]
′ is the idiosyncratic

component, uncorrelated with ft at all leads and lags. The n×r matrix Λ contains factor loadings. χt = Λft

is referred to as the common component. It is assumed that εt is normally distributed and cross-sectionally
uncorrelated, i.e. yt follows an exact factor model. We also shortly discuss validity of the approach in
the case of an approximate factor model, see below. What concerns the dynamics of the idiosyncratic
component we consider two cases: εt is serially uncorrelated or it follows an AR(1) process.

Further, it is assumed that the common factors ft follow a stationary VAR process of order p:

ft = A1ft−1 + A2ft−2 + · · · + Apft−p + ut , ut ∼ i.i.d. N (0, Q) , (2)

where A1, . . . , Ap are r×r matrices of autoregressive coefficients. We collect the latter into A = [A1, . . . , Ap].
8Their estimation approach consists of two steps. First, the parameters of the state space representation of the factor

model are obtained using a principal components based procedure applied to a truncated data set (without missing data).
Second, Kalman filter is applied on the full data set in order to obtain factor estimates and forecasts using all available
information.

9For identification it is required that 2r + 1 ≤ n, see e.g. Geweke and Singleton (1980).

Proietti (2008) estimates a factor model for interpolation of GDP and its�main components
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2.1 Estimation

As ft are unobserved, the maximum likelihood estimators of the parameters of model (1)-(2), which we
collect in θ, are in general not available in closed form. On the other hand, a direct numerical maximisation
of the likelihood is computationally demanding, in particular for large n due to the large number of
parameters.10

In this paper we adopt an approach based on the Expectation-Maximisation (EM) algorithm, which was
proposed by Dempster, Laird, and Rubin (1977) as a general solution to problems for which incomplete or
latent data yield the likelihood intractable or difficult to deal with. The essential idea of the algorithm is
to write the likelihood as if the data were complete and to iterate between two steps: in the Expectation
step we “fill in” the missing data in the likelihood, while in the Maximisation step we re-optimise this
expectation. Under some regularity conditions, the EM algorithm converges towards a local maximum of
the likelihood (or a point in its ridge, see also below).

To derive the EM steps for the model described above, let us denote the joint log-likelihood of yt and
ft, t = 1, . . . , T by l(Y, F ; θ), where Y = [y1, . . . , yT ] and F = [f1, . . . , fT ]. Given the available data
ΩT ⊆ Y ,11 EM algorithm proceeds in a sequence of two alternating steps:

1. E-step - the expectation of the log-likelihood conditional on the data is calculated using the estimates
from the previous iteration, θ(j):

L(θ, θ(j)) = Eθ(j)

[
l(Y, F ; θ)|ΩT

]
;

2. M-step - the parameters are re-estimated through the maximisation of the expected log-likelihood
with respect to θ:

θ(j + 1) = arg max
θ

L(θ, θ(j)) . (3)

Watson and Engle (1983) and Shumway and Stoffer (1982) show how to derive the maximisation step (3)
for models similar to the one given by (1)-(2). As a result the estimation problem is reduced to a sequence
of simple steps, each of which essentially involves a pass of the Kalman smoother and two multivariate
regressions. Doz, Giannone, and Reichlin (2006) show that the EM algorithm is a valid approach for the
maximum likelihood estimation of factor models for large cross-sections as it is robust, easy to implement
and computationally inexpensive. Watson and Engle (1983) assume that all the observations in yt are
available (ΩT = Y ). Shumway and Stoffer (1982) derive the modifications for the missing data case but
only with known Λ. We provide the EM steps for the general case with missing data.

In the main text, we set for simplicity p = 1 (A = A1), the case of p > 1 is discussed in the Appendix. We
first consider the case of serially uncorrelated εt:

εt ∼ i.i.d. N (0, R) , (4)

where R is a diagonal matrix. In that case θ = {Λ, A,R,Q} and the maximisation of (3) results in the
10Recently, Jungbacker and Koopman (2008) have shown how to reduce the computational complexity related to estimation

and smoothing if the number of observables is much larger than the number of factors.
11ΩT ⊆ Y because some observations in yt can be missing.

10
ECB
Working Paper Series No 1189
May 2010

2.1 Estimation

As ft are unobserved, the maximum likelihood estimators of the parameters of model (1)-(2), which we
collect in θ, are in general not available in closed form. On the other hand, a direct numerical maximisation
of the likelihood is computationally demanding, in particular for large n due to the large number of
parameters.10

In this paper we adopt an approach based on the Expectation-Maximisation (EM) algorithm, which was
proposed by Dempster, Laird, and Rubin (1977) as a general solution to problems for which incomplete or
latent data yield the likelihood intractable or difficult to deal with. The essential idea of the algorithm is
to write the likelihood as if the data were complete and to iterate between two steps: in the Expectation
step we “fill in” the missing data in the likelihood, while in the Maximisation step we re-optimise this
expectation. Under some regularity conditions, the EM algorithm converges towards a local maximum of
the likelihood (or a point in its ridge, see also below).

To derive the EM steps for the model described above, let us denote the joint log-likelihood of yt and
ft, t = 1, . . . , T by l(Y, F ; θ), where Y = [y1, . . . , yT ] and F = [f1, . . . , fT ]. Given the available data
ΩT ⊆ Y ,11 EM algorithm proceeds in a sequence of two alternating steps:

1. E-step - the expectation of the log-likelihood conditional on the data is calculated using the estimates
from the previous iteration, θ(j):

L(θ, θ(j)) = Eθ(j)

[
l(Y, F ; θ)|ΩT

]
;

2. M-step - the parameters are re-estimated through the maximisation of the expected log-likelihood
with respect to θ:

θ(j + 1) = arg max
θ

L(θ, θ(j)) . (3)

Watson and Engle (1983) and Shumway and Stoffer (1982) show how to derive the maximisation step (3)
for models similar to the one given by (1)-(2). As a result the estimation problem is reduced to a sequence
of simple steps, each of which essentially involves a pass of the Kalman smoother and two multivariate
regressions. Doz, Giannone, and Reichlin (2006) show that the EM algorithm is a valid approach for the
maximum likelihood estimation of factor models for large cross-sections as it is robust, easy to implement
and computationally inexpensive. Watson and Engle (1983) assume that all the observations in yt are
available (ΩT = Y ). Shumway and Stoffer (1982) derive the modifications for the missing data case but
only with known Λ. We provide the EM steps for the general case with missing data.

In the main text, we set for simplicity p = 1 (A = A1), the case of p > 1 is discussed in the Appendix. We
first consider the case of serially uncorrelated εt:

εt ∼ i.i.d. N (0, R) , (4)

where R is a diagonal matrix. In that case θ = {Λ, A, R, Q} and the maximisation of (3) results in the
10Recently, Jungbacker and Koopman (2008) have shown how to reduce the computational complexity related to estimation

and smoothing if the number of observables is much larger than the number of factors.
11ΩT ⊆ Y because some observations in yt can be missing.

Expectation
Maximization (EM)

Algorithm

9
ECB

Working Paper Series No 1189
May 2010

the forecast accuracy of these specifications with that of univariate benchmarks as well as of the model of
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following expressions for Λ(j + 1) and A(j + 1):12

Λ(j + 1) =

(
T∑

t=1

Eθ(j)

[
ytf

′
t |ΩT

]
)(

T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]
)−1

, (5)

A(j + 1) =

(
T∑

t=1

Eθ(j)

[
ftf

′
t−1|ΩT

]
)(

T∑

t=1

Eθ(j)

[
ft−1f

′
t−1|ΩT

]
)−1

. (6)

Note that these expressions resemble the ordinary least squares solution to the maximum likelihood estima-
tion for (auto-) regressions with complete data with the difference that the sufficient statistics are replaced
by their expectations.

The (j + 1)-iteration covariance matrices are computed as the expectations of sums of squared residuals
conditional on the updated estimates of Λ and A:13

R(j + 1) = diag

(
1
T

T∑

t=1

Eθ(j)

[(
yt − Λ(j + 1)ft

)(
yt − Λ(j + 1)ft

)′|ΩT

])
(7)

= diag

(
1
T

(
T∑

t=1

Eθ(j)

[
yty

′
t|ΩT

]
− Λ(j + 1)

T∑

t=1

Eθ(j)

[
fty

′
t|ΩT

]
))

and

Q(j + 1) =
1
T

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]
− A(j + 1)

T∑

t=1

Eθ(j)

[
ft−1f

′
t |ΩT

]
)

. (8)

When yt does not contain missing data, we have that

Eθ(j) [yty
′
t|ΩT ] = yty

′
t and Eθ(j) [ytf

′
t |ΩT ] = ytEθ(j) [f ′

t |ΩT ] . (9)

Finally, the conditional moments of the latent factors, Eθ(j) [ft|ΩT ], Eθ(j) [ftf ′
t |ΩT ], Eθ(j)

[
ft−1f ′

t−1|ΩT

]

and Eθ(j)

[
ftf ′

t−1|ΩT

]
, can be obtained through the Kalman smoother for the state space representation:

yt = Λ(j)ft + εt , εt ∼ i.i.d. N (0, R(j)) ,

ft = A(j)ft−1 + ut , ut ∼ i.i.d. N (0, Q(j)) , (10)

see Watson and Engle (1983).

However, when yt contains missing values we can no longer use (9) when developing the expressions (5)
and (7). Let Wt be a diagonal matrix of size n with ith diagonal element equal to 0 if yi,t is missing and
equal to 1 otherwise. As shown in the Appendix, Λ(j + 1) can be obtained as

vec
(
Λ(j + 1)

)
=

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]
⊗ Wt

)−1

vec

(
T∑

t=1

WtytEθ(j)

[
f ′

t |ΩT

]
)

. (11)

Intuitively, Wt works as a selection matrix, so that only the available data are used in the calculations.
Analogously, the expression (7) becomes

R(j + 1) = diag

(
1
T

T∑

t=1

(
Wtyty

′
tW

′
t − WtytEθ(j)

[
f ′

t |ΩT

]
Λ(j + 1)′Wt − WtΛ(j + 1)Eθ(j)

[
ft|ΩT

]
y′

tWt

+ WtΛ(j + 1)Eθ(j)

[
ftf

′
t |ΩT

]
Λ(j + 1)′Wt + (I − Wt)R(j)(I − Wt)

))
. (12)

12A sketch of how these are derived is provided in the Appendix, see also e.g. Watson and Engle (1983) and Shumway and
Stoffer (1982).

13Note that L(θ, θ(j)) does not have to be maximised simultaneously with respect to all the parameters. The procedure
remains valid if M-step is performed sequentially, i.e. L(θ, θ(j)) is maximised over a subvector of θ with other parameters
held fixed at their current values, see e.g. McLachlan and Krishnan (1996), Ch. 5.

A Dynamic factor Model
(DFM)
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However, when yt contains missing values we can no longer use (9) when developing the expressions (5)
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TURKEY: VARIABLES IN MONTHLY GDP DFM

H
ar

d
D

at
a

(M
 &

 D
)

So
ft

(M
)

Fi
n

(W
)

Bi
g

D
at

a 
(D

)
Source: Own elaboration

Investment Big Data in a Nowcasting Model (DFM): Variables & Releases
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TURKEY:  OUT-OF-SAMPLE ERROR GDP MODEL

Source: Own Elaboration
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TURKEY: NOWCASTING FINANCIAL CRISIS (SEPT 2018) & COVID CRISIS (MAR 2020)
(quasi real time nowcasting with and without Big Data Indexes  vs Benchmark)**
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Investment Big Data in a Nowcasting Model (DFM): Anticipation
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Results: Investment in Real Time will help policy makers to react 
faster 

Source: Own Elaboration

TURKEY: BIG DATA CONSUMPTION & INVESTMENT
(7-day cum. YoY nominal in Cons., 28-day cum. YoY nominal in Invest.)

BIG DATA CONSUMPTION BIG DATA INVESTMENT

2Q-20 3Q-20 4Q-20 2Q-20 3Q-20 4Q-20
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TURKEY:GB-BBVA BIG DATA INVESTMENT  HEAT MAP
(3mm avg YoY nominal)

Source: Own Elaboration

Results: The "High Definition" dimension will allow policymakers to
differentiate shocks and design more targeted policies

TURKEY:GB-BBVA BiG DATA INVESTMENTS GEO-MAPS RECOVERY AFTER THE COVID
(Change in YoY investment  before, during and after the lockdowns by Covid)

20Activities  & 81Province in Real Time & High Definition
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Conclusions & further Research

- We present a novel approach to estimate Investment in “Real Time & High
Definition” from the analysis of a Bank´s Big Data (BBVA)

- The Investment index improves the properties of a Standard Nowcasting Model
in terms of forecasting accuracy, anticipation and news.

- The “High Definition” dimension can help to design targeted policies

- We cross validate the results through the high correlations with national accounts
and high frequency proxies for Turkey and other countries.

- The characteristics of Big data Information (detailed but short history) advocates for
the use of non linear and/or regularization techniques (Further Research)
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