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Abstract

This paper examines the employment effects of utility-scale renewable energy
deployment in Spain, combining administrative data on wind and solar installations
with quarterly microdata from the Spanish Labour Force Survey at the provincial level.
Using a local projection framework à la Jordà (2005), it estimates dynamic responses to
installed capacity shocks, disaggregated by technology, phase, plant size, and education.
Results show that solar and wind investments generate substantial provincial employment
gains at their peaks: around 10.15 jobs per megawatt for solar and 12.4 for wind. Of the
latter, about 2.4 jobs correspond to renewable skill-intensive occupations, whereas solar-
related employment is more concentrated in other occupational categories. Additional
spillover effects are identified: 2.8 jobs per MW from solar in economically linked
provinces (at least one in occupations requiring intensive renewable skills), and around
0.5 renewable-skilled jobs per MW from wind, out of a total of 1.5 extraprovincial
jobs. The employment effects vary sharply across phases and plant size. Job multipliers
in the first investment wave (2005–2014) were 13 times higher for solar and almost
3 times higher for wind than in later years, partly due to falling costs and the shift
towards larger plants. Small and medium-scale projects create more jobs per MW,
either locally or via spillovers. Worker gains differ by education: solar plants primarily
employ lower-educated workers locally, and vocational or university-trained workers
extraprovincially. Wind plants create earlier and more consistent gains for highly
educated workers, especially outside the host province. Under Spain’s 2023–2030 energy
plan, the estimated employment peak impact is 889,340 additional jobs from 2025 to
2030, while the observed impact from 2005 to 2024 is estimated at around 580,000 jobs.
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1 Introduction

The global transition towards renewable energy is often portrayed as a dual engine for

decarbonization and local economic revitalization. At the heart of this vision lies the

promise of jobs for communities that host renewable infrastructure. However, as stated by

Fabra et al. (2024), the local employment effects of utility-scale renewable energy projects

remain uncertain. In many cases, residents in potential host areas express “Not In My Back

Yard” concerns, fearing disruption without meaningful economic benefits. As renewable

investments accelerate, understanding their employment impacts, both in magnitude and

distribution, is essential for designing effective climate policy and securing public support for

the energy transition.

This question is particularly relevant for Spain. Over the past two decades, the country

has experienced rapid growth in solar photovoltaic and onshore wind capacity, driven by

ambitious climate goals and supportive policies against a background of favorable resources’

endowment for wind and solar energy deployment. Much of this capacity has been installed in

rural provinces, which are often characterized by higher unemployment rates and population

decline. Policymakers have promoted renewable energy as a catalyst for regional development

in these areas (e.g. MITECO, 2024). Yet whether this expansion translates into actual job

creation for local residents remains an open empirical question. Do renewable installations

generate meaningful employment opportunities for nearby workers, or do the benefits primarily

accrue to external firms and specialized labor?

Recent evidence from Fabra et al. (2024) offers a first look into these dynamics. Using

aggregate data from more than 3,900 Spanish municipalities, the authors find that solar

installations are associated with increases in local employment and declines in unemployment,

while wind projects show smaller or statistically insignificant effects. These differences are

attributed to the variation in labor intensity and skill requirements between technologies:
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solar plants typically involve generic construction tasks that can be performed by local

contractors, whereas wind projects demand specialized technical skills and heavy equipment,

often provided by non-local firms.

In this paper, we build on this emerging literature by providing a micro-level analysis of

the labor market effects of renewable energy investments in Spain. We construct a novel panel

dataset that links detailed administrative records on the timing and location of renewable

installations with individual-level data from the Spanish Labour Force Survey (Encuesta de

Población Activa, EPA). This approach enables us to investigate not only overall employment

trends but also who benefits: which occupations are favored, which types of workers gain

jobs, and how effects vary by period, plant size and education level.

Our empirical strategy relies on local projections à la Jordà (2005) to estimate the

dynamic impact of renewable capacity additions, disaggregated by technology, on provincial

employment. We exploit exogenous variation in the timing and intensity of new capacity

additions, investigating heterogeneous effects by phase, plant size, and education.

Our contributions are fourfold. First, by using microdata and examining spillovers

to neighboring or economically linked provinces, we distinguish between jobs gained by

local residents and those filled by commuters or residents in other provinces. Second, we

identify “green occupations” or “renewable occupations” -terms we use interchangeably

throughout this paper- based on the ESCO (European Skills, Competences, Qualifications

and Occupations) taxonomy, as adapted to Spanish data in Barrutiabengoa et al. (2025a),

and we assess whether renewable energy investments promote employment in occupations

requiring green or renewable skills or not. Third, we examine temporal and size dynamics by

separating the employment effects across different phases and plant dimensions, an important

distinction given the technological evolution and changing scale of renewable plants in Spain.

Finally, we analyze heterogeneity across education levels. In summary, this paper provides

novel provincial-level evidence on the labor market impacts of renewable energy deployment.
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By identifying the channels and limitations of green job creation, we contribute to a more

realistic understanding of how clean energy transitions affect local economies.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature

and contextualizes the Spanish case. Section 3 describes the data sources and presents the

construction of the key variables, including our measures of renewable capacity deployment

and green-skilled employment. Section 4 offers a descriptive overview of renewable roll-out

across provinces and time. Section 5 outlines the empirical strategy, detailing the local

projection framework and our identification approach. Section 6 presents the main results,

including average employment effects, spillovers, and heterogeneity by phase, plant size, and

education level. Section 7 uses these estimates to quantify the total employment impact of

renewable expansion in Spain, both retrospectively (2005–2024) and under the 2023–2030

national energy plan. Finally, Section 8 concludes.

2 Literature review and background

The potential of renewable energy investments to stimulate local labor markets has become a

focal point in policy and academic debates surrounding the green transition. While renewable

deployment is often justified by its environmental and long-term macroeconomic benefits,

there is increasing scrutiny on its distributional consequences, particularly whether these

projects create meaningful employment opportunities for the communities that host them.

This issue is especially salient in the context of utility-scale renewable projects, which often

face local resistance under the “Not In My Backyard” dynamic (Germeshausen et al., 2023;

Jarvis, 2025; Rand and Hoen, 2017). Concerns over land use, visual and environmental

disruption, or limited local economic benefits frequently underlie opposition to new solar and

wind facilities. Yet, as many countries frame green energy as a pillar of growth and industrial

strategy (WorldBank, 2021; Sachs et al., 2020), robust empirical evidence is needed to assess
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whether renewable investments deliver on their promise of “green jobs.”

Theoretical channels through which renewables may affect employment are well

documented. Construction and installation phases are typically labor-intensive and may

generate short-term jobs in civil engineering, electrical work, and ancillary services (Fabra

et al., 2024). The extent of local hiring in this phase depends on the labor intensity of the

technology, the skill composition required, and the availability of suitable workers. For

instance, solar PV projects are generally more modular and less technically demanding than

wind farms, enabling greater use of local labor. In contrast, wind energy often relies on

specialized mobile teams and imported equipment, reducing its anchoring in local labor

markets (International Renewable Energy Agency, 2017, 2022). Maintenance and operations

require fewer workers and are often centralized or automated. Additional employment effects

may arise indirectly via increased local demand for goods and services, though these general

equilibrium effects are often modest and hard to isolate empirically (Moretti, 2010; Krekel

et al., 2021; Sunak and Madlener, 2016).

Empirical studies have yielded mixed evidence on these mechanisms. In the United States,

Brown et al. (2012) estimate modest job creation effects of wind energy at the county level,

while Brunner and Schwegman (2022) find little impact on total employment but detect gains

in local GDP and per capita income. Hartley et al. (2015) similarly find no significant job

creation in counties with new wind farms. In contrast, studies on green stimulus programs

such as the ARRA show more robust effects: Popp et al. (2022) estimate that each million

dollars of green funding created approximately ten long-run jobs; Vona et al. (2018) find

large local spillovers from green job creation into non-tradable sectors. In fossil fuel contexts,

Feyrer et al. (2017) show that fracking activity generated 0.85 jobs per million dollars of

output, while Komarek (2016) and Weber (2012) document substantial local gains from

natural gas booms.

Cross-country evidence for Europe also presents mixed results. Azretbergenova et al.
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(2021) apply panel data techniques to EU countries and find a statistically significant but

economically modest effect of renewable energy production on employment, with strong

heterogeneity across regions. Similarly, Fragkos and Paroussos (2018) use a general

equilibrium model and estimate that renewables could support 1.3% of total EU employment

by 2050, especially in sectors such as construction and bioenergy. However, the net effects

depend crucially on the speed of deployment and the ability to retrain workers displaced from

fossil fuel sectors.

At a more disaggregated level, Osei et al. (2022) compare employment effects in European

and Asian countries, finding that institutional quality and supply chain depth are key mediators

of job creation from renewables. This reinforces the notion that local absorptive capacity

plays a decisive role in translating green investment into labor market gains.

Evidence from the Iberian Peninsula is particularly insightful. Costa and Veiga (2021) find

that wind investments reduced unemployment in Portugal during the first wave of renewable

expansion (1997–2017), but effects depended heavily on plant size and region. In Spain, Fabra

et al. (2024) conduct one of the most comprehensive analyses to date, using panel data from

over 3,900 municipalities between 2017 and 2021. They estimate dynamic employment and

unemployment responses to solar and wind installations using local projections with two-way

fixed effects. Their findings reveal that solar projects generate significant employment gains

during the construction phase, about 0.55 job-years per MW, while wind projects have weaker

and more transient effects. Most of the solar-induced job creation dissipates after the project

becomes operational, and much of the employment associated with wind projects is filled by

non-local workers. Importantly, Fabra et al. (2024) also examine fiscal spillovers, showing

that renewable investments increase municipal revenues and per capita income, though the

latter gains are largely attributable to capital income (e.g., land leases) in the case of wind.

Serra-Sala (2023) complements this picture by finding that wind farms increase local fiscal

revenues but have limited and uneven employment effects. Supporting this evidence, Blanco
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et al. (2021) use input-output modeling to assess Spain’s 2011–2020 Renewable Energy

Plan and find that regional multipliers vary widely, with rural areas benefiting less from job

creation than urban centers with industrial capacity.

Recent macroeconometric studies further highlight the asymmetric nature of labor market

responses. Naqvi et al. (2022) show that the effect of renewables on unemployment in Europe

is nonlinear: positive shocks to renewable energy reduce unemployment more in periods

of economic slack than during booms. This points to the countercyclical potential of green

investments but also underscores their limitations as a universal employment tool.

Several studies also suggest that a significant portion of job creation in renewable energy is

concentrated in mid-skill occupations and heavily gendered sectors. For instance, Mauritzen

(2020) notes that wind energy contributes modestly to rural incomes in the U.S., but not

through employment. These patterns raise concerns about the inclusiveness of renewable-

driven job growth. Recent work by Barrutiabengoa et al. (2025a) in the Spanish context

proposes a taxonomy of green occupations based on the ESCO classification, allowing for a

more granular identification of jobs that require green/renewable skills. Incorporating such a

framework is essential to distinguish between short-term construction jobs and long-term

green employment that can support sustained transitions.

The Spanish case is particularly relevant given its two distinct waves of renewable

investment. The first wave (2006–2014), triggered by generous feed-in tariffs, involved

smaller, dispersed projects. The second wave (from 2018 onward), driven by auction schemes

and falling costs, has produced larger plants concentrated in rural provinces with fragile labor

markets and demographic decline (Fabra et al., 2024; IRENA, 2024). According to Red

Eléctrica de España (2025), renewables now supply over half of Spain’s electricity, with 34.9

GW of solar and 32.5 GW of wind installed by June 2025. This dramatic transformation

creates both opportunities and risks for local labor markets. Gutiérrez et al. (2023) document

spatial mismatches in Spain between economic activity and population, which may exacerbate
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inequalities in who benefits from the green transition.

Altogether, this literature suggests that while renewable energy investments have the

potential to stimulate local labor markets, their actual impact is mediated by technology,

timing, skill needs, and local absorptive capacity. For policymakers, this underscores the

importance of complementary interventions, such as training programs or community benefit

agreements to ensure that renewable energy transitions also yield inclusive and geographically

balanced employment outcomes.

3 Data

Following Fabra et al. (2024), our baseline specification builds upon two key variables:

installed renewable capacity, which serves as the exogenous shock, and employment, which

constitutes the outcome variable of interest. This framework enables the estimation of

impulse-response functions using local projections to assess the dynamic effects of renewable

deployment on employment.

3.1 Installed renewable capacity

Data on renewable (wind and solar1) capacity installations were obtained from the PRETOR

database,2 Spain’s official administrative registry of energy generation.3 This registry

contains detailed plant-level records, including information on location (municipality),

installed capacity (in kilowatts), and several relevant administrative milestones.

In this study, we use the date of definitive registration as the benchmark for timing the

shock. This date marks the formal inclusion of the plant in the remuneration scheme and is

1Rooftop solar panels installed for residential self-consumption are not included in the analysis.
2PRETOR - Sede Electrónica.
3Eligible technologies include renewable energy sources, cogeneration, and installations based on waste

treatment.
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granted only after the successful completion of all required technical inspections, as regulated

by Royal Decree 413/2014 of 6 June.4 However, due to delays in administrative processing,

definitive registration may occur several months after the actual completion of construction.

Therefore, in line with Fabra et al. (2024), we allow the employment effects to materialize

ahead of the registration date, particularly during the construction phase.

In our baseline specification, we allocate installed capacity to the quarter in which

definitive registration occurs (t = 0), while tracing its effects from eight quarters prior through

four quarters after this date. We further distinguish between two renewable technologies:

solar photovoltaic and onshore wind. This disaggregation allows us to explore potential

heterogeneity in employment responses, given the differing labor intensities and installation

processes associated with each technology. The data are grouped by province and quarters,

and are presented in megawatts (MW).5

3.2 Employment data

Quarterly employment data are drawn from Spain’s Labour Force Survey (Encuesta de

Población Activa, EPA), produced by the Spanish Statistical Office (INE). We use province-

level microdata from the first quarter of 2005 through the fourth quarter of 2024, which provides

representative coverage over time and across Spanish provinces. To ensure comparability and

smooth fluctuations due to seasonality, the employment series is seasonally adjusted using

the Demetra+ software package.

Our primary outcome variable is the logarithmic quarterly difference in total employment

at the provincial level. We focus on the aggregated outcome, although disaggregated

results by period, plant size or education level are explored in subsequent analyses. To

better capture employment effects in sectors more exposed to the green transition, we also

4Published in Spain’s Official State Gazette (BOE-A-2014-6123).
5Kilowatts divided by 1,000, to enhance clarity
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complement our analysis with a classification of ”green or renewable occupations” constructed

by integrating EPA microdata with the ESCO (European Skills, Competences, Qualifications

and Occupations) framework, following the methodology developed in Barrutiabengoa et al.

(2025a). Specifically, renewable employment is defined as employment classified under

CNOs 24, 31, 32, 71, 72, and 75. These six occupations correspond to the categories with the

highest intensity of green skills identified in Barrutiabengoa et al. (2025a), and together they

capture both the technical and manual dimensions of the renewable energy transition.6 While

the broader framework developed by Barrutiabengoa et al. (2025a) also identifies other green

skill categories, such as those related to biodiversity or recycling, these are not considered in

the analysis.

3.3 Indirect employment effects via interregional trade

To capture indirect or spillover employment effects across provinces, we compute a measure

of employment growth in provinces economically connected to each focal province. This

is achieved by multiplying the provincial employment growth vector in each period by an

inter-provincial economic-flows matrix.

The interdependence matrix is sourced from the C-Intereg project, 7 and corresponds to

the year 2019.8 It contains bilateral trade linkages across all Spanish provinces. To isolate

inter-provincial effects, we set the diagonal elements (representing self-dependence) to zero.
6CNOs 24, 31, and 32 include Science, Engineering, and Mathematics Professionals, Science and

Engineering Associate Professionals, and Physical and Engineering Science Technicians, respectively,
occupations that typically require advanced technical training and exhibit a high concentration of green
competences. Meanwhile, CNOs 71, 72, and 75 encompass Construction Trades Workers, Metal, Machinery
and Related Trades Workers, and Labourers in Mining, Construction, Manufacturing and Transport, categories
more directly tied to on-site construction and installation activities. This extended definition allows us to better
account for the full range of occupational profiles involved in the deployment and operation of renewable energy
infrastructure.

7Annual Trade Dashboard – C-INTEREG.
8One could argue that using a fixed matrix of interprovincial linkages has certain drawbacks, as economic

relationships between provinces may evolve over time. However, as shown in Barrutiabengoa et al. (2025b),
replacing the matrix with time-varying alternatives does not materially affect the results, since the structure of
interprovincial linkages does not change significantly in a statistical sense over the sample period.
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The resulting matrix, denoted W, captures the extent to which employment growth in one

province may influence or reflect conditions in other economically linked provinces.

Let Δ log(E𝑡) be the vector of log differences in employment across provinces at time 𝑡.

Then, the measure of extraprovincial employment growth affecting province 𝑖 is given by:

𝐸̃
spillover
𝑖,𝑡

=
∑︁
𝑗≠𝑖

𝑊𝑖 𝑗Δ log(𝐸 𝑗 ,𝑡) (1)

This transformation yields a corrected measure of employment growth in connected or

economically proximate provinces -growth that may depend on the additions in megawatts

in the focal province. In other words, it isolates the component of employment growth

in other provinces that is potentially responsive to changes in installed capacity within

the province under study. This spatially-weighted employment metric is later used to

estimate extraprovincial impulse-response functions and assess the extent to which renewable

investments in one region generate indirect employment in others.

3.4 Data integration and final sample

The final dataset consists of a panel of Spanish provinces observed quarterly from 2005Q1

to 2024Q4. Each observation includes the total (and renewable) employment levels, newly

installed capacity by technology (solar or wind), and population controls. Installed capacity is

normalized by lagged provincial population to account for size heterogeneity and avoid scale-

induced endogeneity. Put another way, the shock is scaled to avoid imposing a relationship

between province size and impact. The aim is to prevent larger provinces from mechanically

exhibiting a greater effect from the same shock, which would be counterintuitive. Such a

setup would implicitly suggest that installing the same amount of MW requires more workers

in larger provinces -i.e., that they are less efficient.

This setup allows us to estimate dynamic local multipliers of renewable deployment on
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employment, while controlling for time -and province-fixed effects.

4 Renewable roll-out in Spain: an overview

The evolution of renewable energy deployment in Spain reveals two clearly differentiated

phases, as depicted in Figure 1. The first phase, spanning from 2005 to 2014, was marked

by a rapid expansion in installed capacity, fueled by generous public support mechanisms.

This period culminated two years after the enactment of Royal Decree-Law 1/2012, which

suspended economic incentives for new renewable, cogeneration, and waste-based electricity

generation projects.9 The scope of the moratorium was limited to installations that had not

yet been formally registered in the remuneration scheme. As such, the aggregate capacity

continued to grow temporarily, reflecting the completion and registration of projects that had

secured preliminary approvals before the decree’s entry into force.10

The second phase commenced with the gradual reactivation of support mechanisms. In

2015, public auctions were reinstated for wind projects and, two years later, extended to solar

installations.11 This marked the beginning of a new cycle of deployment, with a marked

acceleration from 2018 onward.

Figure 1 also identifies two peaks in definitive registrations linked to regulatory

discontinuities. The first, in Q3 2008, was driven by developers rushing to benefit from

the favorable feed-in tariffs under Royal Decree 661/2007 before the introduction of RD

1578/2008, which lowered remuneration levels and imposed capacity quotas.12 The second

9Royal Decree-Law 1/2012 entered into force on January 28, 2012.
10Projects that had already been granted access permits or preliminary registration before the Royal Decree

entered into force were still eligible to complete the process under the previous support scheme. For this reason,
the first phase is extended up to two years beyond the enactment of the aforementioned Royal Decree, following
the approach taken in the literature -for example, in Fabra et al. (2024).

11Orders IET/2212/2015 and ETU/315/2017 established the regulatory and remuneration conditions for
these auctions.

12Royal Decree 1578/2008 replaced the previous system with a capped auction-based scheme, significantly
reducing tariffs for new solar projects.
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Figure 1: Evolution of installed capacity in Spain

peak, in Q4 2019, reflected a similar regulatory anticipation effect, as developers sought to

complete project formalities before the administrative milestones and deadlines introduced

by RD-Law 23/2020 took effect.13 Technological composition also shifted markedly across

phases. Whereas the initial expansion was largely wind-driven, the second phase witnessed

the dominance of solar capacity, which overtook wind as the leading source of cumulative

installed renewable power by 2024.

Beyond regulatory factors, the two phases also differ in terms of technological efficiency

and deployment scale. According to IRENA (2024), the levelized cost of electricity (LCOE)

for wind declined by 65% and for solar by 85% between 2010 and 2023. These cost reductions

were accompanied by a profound transformation in the size and nature of new projects. For

solar, the number of plants installed quarterly decreased from 1,457 to 71, while the average

13RD-Law 23/2020, effective from June 25, 2020, imposed binding conditions on the preservation of grid
access rights.
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Figure 2: Number of plants and average size per year

(a) Solar

(b) Wind

plant size rose from 0.07 MW to nearly 10 MW. In wind, the number of new plants declined

from 20 to 12 per quarter, while the average capacity increased from 17.04 MW to 22.6 MW.

These trends are illustrated in Figure 2. These structural shifts suggest that the employment

effects of renewable deployment are not constant over time. Rather, they exhibit a degree of
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temporal heterogeneity that will be explored in subsequent sections.

Spatial heterogeneity is equally salient. Figures 3a and 3b show the geographic distribution

of installed capacity by technology. Wind projects are concentrated in Galicia, the northeast,

and the province of Cádiz, while solar installations are most prevalent in the southern regions.

Figures 3c and 3d extend this analysis by depicting commercial proximity to renewable

deployment, a metric that captures inter-provincial economic exposure to installed capacity

based on trade linkages. Regions such as Madrid, Barcelona, Valencia, and Seville emerge

as commercial hubs in both technologies, suggesting that they may experience indirect

employment spillovers even in the absence of significant local deployment. This insight

underpins the relevance of considering both direct and indirect channels when evaluating the

labor market effects of renewable energy investments.
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Figure 3: Map of installed capacity by technology

(a) Solar installed capacity (b) Wind installed capacity

(c) Economically interconnected solar capacity (d) Economically interconnected wind capacity

5 Baseline specification

5.1 Motivation and estimation framework

To estimate the dynamic employment effects of renewable capacity installations, we rely on the

local projection (LP) method developed by Jordà (2005). LPs offer a flexible, transparent, and

robust framework for studying impulse-response dynamics in panel settings with staggered

treatment adoption, varying treatment intensities, and unit-specific heterogeneity. Unlike

models that rely on strong structural assumptions or specific timing constraints, LPs allow

researchers to estimate dynamic effects directly and non-parametrically, through a series of
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horizon-specific regressions.

Their growing popularity in applied work stems from this simplicity and robustness. As

noted by Montiel et al. (2024), LPs allow for valid and conservative inference even in small

samples and under complex data-generating processes, albeit at the cost of some statistical

efficiency. This makes them particularly attractive in empirical settings, such as ours, where

shocks are heterogeneous across space and time, and where inference robustness is paramount.

Recent studies in macroeconomics and regional economics, such as Ramey and Zubairy

(2018), Alloza and Sanz (2021), and Fabra et al. (2024), confirm the relevance of LPs for

dynamic policy analysis in high-dimensional settings.

5.2 Regression specification

For each forecast horizon ℎ ∈ {−𝐻, ...,−1, 0, 1, ..., 𝐿}, we estimate the following regression:

𝑦𝑖,𝑡+ℎ = 𝛼𝑖 + 𝛾𝑡 +
𝑃∑︁
𝑝=1

𝛽𝑝𝑦𝑖,𝑡−𝑝 +
𝑄∑︁
𝑞=0

𝜃𝑞𝑋𝑖,𝑡−𝑞 +
𝑃∑︁
𝑝=0

𝛿𝑝𝐶𝑖,𝑡−𝑝 + 𝜀𝑖,𝑡+ℎ (2)

where:

• 𝑦𝑖,𝑡+ℎ is the outcome variable, defined as Δ ln(𝐸𝑖,𝑡), i.e., the quarterly employment

growth rate. We estimate this equation using two different outcomes: (i) total provincial

employment and (ii) extraprovincial (spatially-weighted) employment, as defined in

Section 3.3, to separately identify intraand interprovincial effects.

• 𝑋𝑖,𝑡 denotes the additional installed renewable capacity in megawatts, normalized by

the provincial lagged population to avoid scale-induced endogeneity.14

14Beyond the direct effects on employment resulting from the construction and maintenance of renewable
energy plants, such investments may also generate indirect, general equilibrium effects. Increased economic
activity can lead to additional job creation in related sectors, but may also crowd out employment elsewhere in
the local economy. Since we estimate reduced-form local projections, our approach captures both direct and
indirect channels -without the need to explicitly model all underlying transmission mechanisms.
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• 𝐶𝑖,𝑡 is a vector of control variables that includes labor force in the final specification.

Alternative controls, such as population density, have also been tested, each lagged 𝑃

times. The results remain robust to the inclusion of these alternative specifications.

• 𝛼𝑖 and 𝛾𝑡 are province and time (quarter) fixed effects, respectively.

• 𝜀𝑖,𝑡+ℎ is the error term.

We set 𝑃 = 9 and𝑄 = 8, allowing the model to trace dynamic effects over a horizon ranging

from eight quarters before to four quarters after the installation event, i.e., ℎ ∈ [−8, 4], with

𝐻 = 8 and 𝐿 = 4. This window captures both the construction and initial operational phases

of renewable energy projects, where most employment effects are expected to concentrate.

We include 𝑃 = 9 lags of the dependent variable. This corresponds to 𝑡−(𝑞+1) under our

baseline specification with 𝑄 = 8. Since the event window begins at ℎ = −8 and construction

is assumed to start around that time, this is the first horizon where a non-zero effect may

plausibly occur. Consequently, the estimated coefficients for horizons earlier than ℎ = −8 (if

examined) would reflect pre-treatment dynamics and thus serve as a diagnostic as stated by

Fabra et al. (2024).15

5.3 Impulse Response Functions and interpretation in levels

5.3.1 Cumulative responses

We construct accumulated impulse-response functions (IRFs) by summing estimated

coefficients over the horizons using the following formula:

15One potential concern in panel settings with lagged dependent variables is the presence of dynamic panel
bias (Nickell bias). However, in our context, this issue is mitigated by several factors: (i) our estimation strategy
relies on local projections, which do not estimate dynamic parameters directly; (ii) our sample has relatively
long time dimension; and (iii) our coefficients of interest are associated with exogenous variation in 𝑋𝑖,𝑡 , not
with lagged outcomes. For these reasons, the bias is not a central concern in our framework.
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IRF(ℎ) = exp

(
ℎ∑︁
𝑠=0

𝜃𝑠

)
− 1 (3)

This yields the cumulative percentage change in employment associated with an increase

of one MW per capita.

5.3.2 Conversion to number of employed persons

To translate these IRFs into a more intuitive metric, the number of additional employed

persons per MW, we rescale the responses using the following identity:

IRFpersons(ℎ) = IRF(ℎ) ·
(
𝐸𝑖,𝑡−1

Pop𝑖,𝑡−1

)
(4)

where 𝐸𝑖,𝑡−1 is total employment and Pop𝑖,𝑡−1 is the population in province 𝑖 at time 𝑡−1. This

transformation allows us to interpret the effect of a one-MW increase in installed capacity as

the number of additional jobs it creates in absolute terms. When the dependent variable is

extraprovincial employment, the same transformation is applied, but based on trade-weighted

employment and population figures -that is, the product of the respective vectors and the

interprovincial trade matrix.

When the dependent variable is restricted to renewable-intensive (“green”) occupations,

we adjust this further by multiplying by the share of renewable jobs in total employment:

IRFgreen(ℎ) = IRF(ℎ) ·
(
𝐸𝑖,𝑡−1

Pop𝑖,𝑡−1

)
· 𝜋green (5)

where 𝜋green denotes the proportion of renewable-intensive occupations (as defined by CNO

codes 24, 31, 32, 71, 72, and 75) in total provincial employment. When analyzing the impact

across other relevant groups, such as educational cohorts, we apply the same methodology,

replacing 𝜋green with the appropriate indicator, such as 𝜋edu cat, each representing the share of
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the corresponding category in total employment.

5.4 Bootstrap inference

To construct confidence intervals for the estimated IRFs, we implement a two-step bootstrap

procedure with 3,000 iterations. We begin by presenting results based on a standard resampling

scheme by province, and then extend the analysis using a more demanding two-dimensional

block-bootstrap design in Appendix 1. All impulse response functions report confidence

intervals at the 68% and 84% levels, with the former depicted using a darker shading and the

latter with a lighter one.

• Step 1: Resampling by province (baseline approach). At each iteration, we draw

provinces with replacement and re-estimate the full set of local projection regressions

using the complete time series for each selected unit. This procedure accounts for

cross-sectional dependence and is widely used in panel-data applications of LPs.

• Step 2: Block bootstrap over province-time panels. To address potential serial

correlation or time-varying uncertainty, we implement a two-dimensional block

bootstrap. We sample rectangular blocks of province-time cells, preserving the

temporal and cross-sectional structure of the panel. To ensure that all lag structures (of

length 𝑃, and 𝑄) are consistently defined in each resampled block, we trim the initial

and final periods of the sample -typically discarding up to 𝑄 quarters at the beginning

and 𝐿 at the end. Furthermore, we restrict the resampling window to 8 years or 32

periods. This ensures that each bootstrap sample retains adequate temporal structure

and comparable variability across iterations, thereby enhancing our ability to capture

time-varying uncertainty and potential heteroskedasticity in the estimated responses.

However, it introduces additional issues, as discussed in Appendix 1.
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6 Results

This section presents the main empirical findings of the paper. We estimate the dynamic

employment effects of renewable capacity deployment using local projections, as described in

Section 5. All effects are expressed as the number of additional employed persons generated

per megawatt of newly installed renewable capacity, and unless otherwise specified, are

measured at the peak of their respective impulse response functions. The impulse-response

functions are shown for a horizon ranging from eight quarters before the approval date

(𝑡 = 0) to four quarters after, capturing both the construction and early operational phases of

renewable projects.16

We begin by documenting the average responses across the full sample period (2005–2024),

and then analyze heterogeneity across two clearly distinct phases of the energy transition in

Spain: the first wave (2005–2014) and the second wave (2018–2024). These phases, illustrated

in Figure 1, are characterized by sharp differences in project size, technological mix, and

investment volume. We also examine the effects on neighboring provinces, renewable-related

occupations (as defined by CNO codes), heterogeneity by plant size, and differences by

education level.

6.1 Baseline employment effects

Figure 4a plots the response for total employment. The installation of one additional MW

of renewable capacity leads to a statistically significant increase in provincial employment,

with effects starting approximately two years prior to the installation date and peaking around

𝑡 = 4. Although we do not display the IRF beyond that point, the effect stabilizes from

period 4 onwards. At their maximum, these effects reach nearly 10.15 new jobs per MW.
16The impulse response functions have been smoothed using a procedure functionally equivalent to penalized

local projections (Barnichon and Brownlees, 2019), which impose a second-difference penalty directly during
estimation. The original, unsmoothed IRFs are available in Appendix 2.
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Approximately half of the employment effects are already visible during the construction

phase and the initial stages of the plant. Since 𝑡 = 0 corresponds to the day where electricity

production is permitted, it is entirely expected that a relevant share of job creation occurs by

that point. Nonetheless, it is interesting to observe that some additional employment emerges

afterward. The median response averaged across horizons is approximately 4.4 jobs per

megawatt installed.

Figure 4: IRFs to an additional MW of solar installed capacity

(a) Employment (b) Renewable employment

Figure 4b, which depicts the response of renewable employment to the installation of one

additional megawatt of solar energy, does not reveal a statistically significant effect. This

finding is consistent with prior literature -for instance, Fabra et al. (2024) emphasized that

solar power deployment generally requires less specialized labor. Our results suggest that the

provincial jobs that are created during solar installation may not align with the occupational

profiles classified as ”green” under the ESCO framework, at least not according to the skill

dimensions emphasized in its taxonomy. This may be related to employment being generated

in occupational categories outside the core green CNOs identified by the ESCO framework,

categories with lower green skill intensity but nonetheless essential for the construction and

assembly of energy facilities.

Figure 5a shows the estimated dynamic impact of total employment in response to
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one additional MW of wind capacity. The employment response begins to rise steadily

approximately two years prior to installation, consistent with the timing of pre-operational

activities such as permitting, groundwork, and turbine assembly. The effect continues to grow

throughout the construction window and into the operational phase, reaching a peak of nearly

12.4 new jobs per MW at 𝑡 = 4. The employment response associated with wind projects

exhibits a profile similar to that of solar installations, although with somewhat greater impact

observed in the quarters leading up to 𝑡 = 0. This could reflect the greater logistical and

technical complexity of wind infrastructure, as well as the longer lead times required for

project development and installation. However, the increase in employment also tends to

level off approximately one year after the plant begins to operate, creating long-term jobs, as

argued by Popp et al. (2022). The median response averaged across horizons is approximately

5.8 jobs per megawatt installed.

Figure 5: IRFs to an additional MW of wind installed capacity

(a) Employment (b) Renewable employment

In contrast, Figure 5b illustrates the response of green skill-intensive employment to

wind deployment. While the IRF displays a positive effect starting in the quarters leading

up to installation, the estimated response is more modest in magnitude and not persistent

over time. The peak reaches just above 2.4 renewable jobs per MW, after which the effect

gradually dissipates and becomes more uncertain. This result is particularly noteworthy:
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unlike in the case of solar, wind installations generate a statistically significant increase in

renewable employment. This distinction suggests that wind energy projects may have a

stronger alignment with occupations that require green skills.

The dynamic pattern and magnitude of the effects for solar are broadly consistent with the

findings in Fabra et al. (2024), who estimate an impact of approximately five jobs per MW at

the county level. While this figure is lower than our estimate, it remains closely aligned in

both scale and interpretation. This is reasonable given that counties, as defined by Fabra et al.

(2024), correspond to a smaller geographical unit than provinces -321 counties versus 50

provinces in Spain- suggesting that aggregating to the provincial level naturally amplifies

the observed effect, as broader geographic units are better able to capture the effects, likely

because the relevant labor supply is concentrated in larger urban centers, as well as in the

provincial headquarters of major firms. In contrast, our estimates for wind diverge more

substantially from those in Fabra et al. (2024), who find no statistically significant employment

effect for wind deployment. Our results, by contrast, identify a clear and persistent positive

impact. This discrepancy may indicate that wind-related employment effects are even more

spatially concentrated and may therefore require a broader geographic scope to be fully

captured. That is, employment gains from wind investments may cluster in specific areas

-likely urban or industrial hubs within a province- making provincial-level analysis more

suitable.

The disparity between renewable and total job responses also echoes evidence from the

literature. Both Vona et al. (2018) and Popp et al. (2022) show that green investments under

the American Recovery and Reinvestment Act led to the creation of direct and indirect jobs,

with the latter often comprising the majority. Similarly, Mauritzen (2020) finds that the local

presence of wind farms in the United States yields modest employment gains, primarily

through indirect channels such as construction services or land lease payments, rather than

via employment in core green occupations.
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6.2 Spillover effects in economically connected provinces

We next examine whether renewable energy installations generate employment spillovers

beyond the boundaries of the province in which the investment occurs. Figures 6 and 7

present IRFs based on spatially-weighted employment in economically connected provinces,

using the interregional trade matrix described in Section 3.3.

Focusing on Figure 6a, we find statistically significant extraprovincial effects, with up to

nearly three jobs (2.8) created in other provinces per megawatt of solar capacity installed. This

is a non-negligible figure: given that approximately ten jobs are created within the province

itself, it implies that around one-quarter of the total employment effect occurs outside the host

province. Averaging the median response across all horizons yields an estimated 1.46 jobs

per megawatt installed. This result highlights the broader economic footprint of renewable

investments and underscores the importance of accounting for interregional linkages in

impact evaluations. These workers may be temporarily assigned to the plants to perform

construction, supervision, or management tasks, or may carry out such functions remotely.

Figure 6: IRFs to an additional MW of solar installed capacity

(a) Extraprovincial Employment (b) Extraprovincial Renewable employment

Interestingly, we also find that a substantial share of these spillover jobs, slightly more

than one-third, are in occupations classified as green skill-intensive under the ESCO-based

taxonomy. This is in contrast to the within-province results, where green employment effects
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were non-significant. One plausible explanation is that more specialized, green-skill-intensive

tasks may be performed by workers based in certain provinces, particularly in larger urban

centers where technical expertise and service providers are concentrated. Blanco et al. (2021)

already noted that rural areas generally benefit less from renewable-related job creation.

However, this is likely explained not only by the concentration of skilled labor in large urban

centers, but also by the fact that the headquarters of major firms are typically located in

specific provinces, leading to a higher share of employment contracts being formalized there.

In both cases, the spillover effects are most pronounced around the installation phase or

shortly before the plant becomes operational. This timing suggests that the extraprovincial

impact may be driven by the temporary geographic mobility of workers and firms engaged in

construction, installation, and commissioning activities, rather than by long-run operational

needs.

Figure 7: IRFs to an additional MW of wind installed capacity

(a) Extraprovincial Employment (b) Extraprovincial Renewable employment

Turning to wind, Figure 7a shows the extraprovincial effects associated with the installation

of one additional MW of wind capacity. We again find positive spillovers in economically

connected provinces, although the estimated effect is somewhat smaller and more uncertain

than for solar. The peak reaches approximately 1.5 jobs created in other provinces per MW

installed, around half of the magnitude observed for solar, and the confidence intervals are
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wider, reflecting greater statistical uncertainty. The median response, averaged over the entire

horizon, amounts to roughly 0.7 jobs per megawatt. This more modest and less precise

estimate may stem from the greater capital intensity and logistical complexity of wind projects,

which could make their indirect labor footprint more variable across regions. In summary,

extraprovincial employment spillovers represent about 10% of the total employment effect

associated with wind installations.

Nonetheless, an interesting feature of the wind results is the composition of the spillover

employment. As shown in Figure 7b, approximately 40% of the extraprovincial jobs created

correspond to occupations classified as green. This proportion is slightly higher than that

observed for solar spillovers. These findings reinforce the idea that wind investments, while

generating fewer total indirect jobs, are more strongly associated with specialized, green-

skill-intensive labor. It is also noteworthy that these effects tend to emerge later, once the

plant is already operational. As with solar, non-green spillover effects are most pronounced

around the installation period or just before commissioning. This further supports the view

that the extraprovincial effects are non-negligible, as argued by Krekel et al. (2021), Vona

et al. (2018), Moretti (2010), and Moretti (2010) and primarily driven by non-specialized,

mobile workforces and service providers engaged in the construction and commissioning of

wind energy infrastructure prior to operation, but are later replaced by more stable, long-term

jobs requiring green skills.

6.3 Heterogeneity by investment phase

To assess whether the employment effects of renewable investments have evolved over time,

we split the sample into two distinct phases, following the temporal pattern highlighted

in Figure 1 and initially identified by Fabra et al. (2024): (i) a first wave (2005–2014),

characterized by smaller, more spatially dispersed projects with a predominance of wind

technology, and (ii) a second wave (2018–2024), marked by the deployment of large-scale
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solar photovoltaic plants.

Figure 8 displays the impulse response functions for solar and wind, respectively, across

both phases, with the first phase shown in blue and the second phase in red. Substantial

differences are observed, particularly for solar technology. As shown in Figure 8a, the peak

employment impact of solar in the first phase is close to 128 jobs per MW, compared to

approximately 10.15 jobs per MW in the second phase, a difference of nearly a factor of 13.

In addition, confidence intervals are substantially wider in the earlier period, rendering the

response statistically non-significant at the 84% confidence level. This likely reflects greater

heterogeneity in project characteristics and implementation contexts.

Figure 8: IRFs to an additional MW of installed capacity by phases

(a) Solar (b) Wind

This stark contrast can be partly attributed to differences in project scale and frequency, as

discussed in Section 4.17 In the first phase, the average number of solar plants commissioned

per quarter was around 1,457, with a mean plant size of just 0.07 MW. By contrast, in the

second phase, the number of installations per quarter dropped by 95% to 71, while the

average plant size surged to 9.97 MW, a 14,143% increase. These scale shifts may influence

17It may also reflect differences in the financing mechanisms across phases -specifically, the shift from
feed-in tariffs to competitive auctions- which, while less immediately observable, likely play a role in shaping
labor market impacts. This channel warrants further investigation in future research.
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employment outcomes through at least two main channels: (1) economies of scale, which

reduce the amount of labor required per MW; and (2) technological improvements that lower

installation and operational costs over time. The latter mechanism is supported by evidence

in Fabra et al. (2024), who cite IRENA (2024) cost estimates: the average cost of solar

installations fell approximately from $4,728/kW to $778/kW between the early and late

phases, while wind costs declined from $2,172/kW to $1,159/kW.

Turning to wind, the differences across phases are less dramatic but still notable. The

employment impact in the first phase peaks at around 27 jobs per MW, compared to roughly

12 jobs per MW in the second phase, more than a twofold difference. Adjusting for changes

in technology costs (a 6x drop in cost for solar, 1.9x for wind), the employment intensity per

dollar invested declines by a factor of approximately 2.1 for solar and 1.4 for wind.18 This

suggests that once we account for cost trends, the reduction in employment per MW between

phases becomes more consistent across technologies.

These patterns likely reflect a confluence of factors that enhance productivity, including

technological innovation, digitalization, standardization, and increasing returns to scale.

Importantly, our findings are consistent with the phase-based heterogeneity documented

in Fabra et al. (2024), and align with broader evidence on the evolving labor intensity

of infrastructure and clean energy investments (e.g., Alloza and Sanz, 2021; Bartik et al.,

2019). In the following subsection, we examine this hypothesis more directly by analyzing

heterogeneity in employment effects by plant size.

18This interpretation implicitly assumes a relative increase in the cost of labor compared to capital, which
could help explain part of the decline in employment per megawatt installed. However, other factors -such as
gains in installation productivity driven by standardization, improved logistics, or greater reliance on specialized
contractors- may also contribute to this pattern.
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6.4 Heterogeneity by plant size

As discussed in the previous section, one of the most striking differences between the two

investment phases lies in the scale of the projects implemented. In order to isolate the effect of

plant size on employment outcomes, independent of time period, we now turn to an analysis

of heterogeneity by plant size directly.

Figure 9 offers a clear visual representation of the distribution of installed capacity across

projects, separately for wind and solar technologies. The contrast is stark. In the case of wind,

cumulative installed capacity increases relatively linearly as we move through the ranked list

of plants, suggesting a fairly uniform distribution of project sizes. Although some degree of

convexity is present, reflecting the presence of moderately large projects, the growth is quite

smooth. By contrast, solar investments exhibit a much more skewed distribution. Most solar

plants are small in scale and contribute minimally to overall capacity, while a small number

of very large plants account for the vast majority of installed capacity. The curve is markedly

convex, exponential in shape, indicating the presence of extreme right-tail dominance in

project sizes.

This extreme concentration of installed capacity among a handful of very large projects

raises a natural question: to what extent do employment effects vary with plant size? In

the next lines, we investigate whether smaller solar plants are associated with more labor-

intensive deployment, and whether economies of scale reduce employment per MW in larger

installations. As noted earlier, differences in scale may account for part of the residual

gap in labor intensity -on the order of 1.4 to 2.1 times- observed between early and recent

investments.

Given the highly unequal size distribution of solar projects, we adopt a classification

method based on cumulative installed capacity rather than plant count. Specifically, we rank

all solar plants from smallest to largest and group them into three categories according to
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Figure 9: Accumulated installed capacity by number of plants

their contribution to total capacity:

• Small plants: installations accounting for the bottom 50% of cumulative capacity.

These do not exceed 49 MW and correspond to the regulatory threshold used in Fabra

et al. (2024).

• Medium plants: installations contributing from the 50th to the 75th percentile of

capacity, with sizes ranging from 49 to 127 MW.

• Large plants: installations making up the top 25% of cumulative capacity, comprising

only 35 plants above 127 MW.

This approach yields highly asymmetric groups: while the small-plant segment contains

21,269 projects, the medium and large segments include only 100 and 35 plants, respectively.

We adopt this capacity-based stratification precisely because the vast majority of plants, about

90%, represent only a small fraction (approximately 9%) of total capacity. A grouping based
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on equalplant windows would fail to capture the economic weight of the largest projects and

would obscure key dynamics.

Figure 10: IRFs to an additional MW of solar installed capacity

(a) Employment (b) Renewable employment

Figure 10a presents the dynamic response of total provincial employment by plant size.

The results reveal clear differences. Medium and large plants generate statistically significant

positive effects, with similar timing and dynamics, peaking around the installation date, with

clear anticipatory effects driven by construction activity. In contrast, the impact of small

plants is only statistically significant after or close to 𝑡 = 0, which may reflect fundamental

differences in the construction processes by plant size. This result is particularly informative,

as it reveals a pattern that was not fully captured in Section 6.1. Specifically, we now

observe that the construction phase plays a substantial role in job creation for solar projects, a

dynamic that was likely obscured in the baseline estimates due to the dominance of small

scale installations in the sample. The magnitude of the employment effect is roughly 6 times

larger for medium-sized plants than for large ones (46.7 vs 8 jobs per MW), suggesting that
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while both induce job creation, larger plants may benefit from economies of scale or greater

deployment efficiency.

In terms of renewable employment (Figure 10b), only medium-sized plants show

significant effects, with green jobs representing approximately one-third of total employment

created. The estimates for small and large plants are not statistically significant, reinforcing

the idea that medium-scale solar projects may strike a balance between capital intensity and

local labor engagement.

Figure 11: IRFs to an additional MW of solar installed capacity

(a) Extraprovincial Employment (b) Extraprovincial Renewable employment

The extraprovincial results provide further insight. As shown in Figure 11a, small plants

generate sizable and statistically significant employment spillovers to economically connected

provinces, particularly during the construction phase. At peak, they create around 8.35 jobs

per MW outside the host province -on par with the impact of medium plants but with greater

statistical clarity. This suggests that small-scale projects are often executed (or complemented

for medium and large plants) using external supply chains and labor, yielding indirect
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employment effects in trade-linked regions. This confirms the finding from Section 6.2 that

solar installations generate a substantial amount of extraprovincial employment. However,

statistical significance is most evident for either very large or very small plants, particularly

the former, which is a pattern that appears conceptually plausible.

Finally, Figure 11b displays the dynamic response of extraprovincial renewable

employment. The overall dynamics mirror those of total extraprovincial employment,

but with some differences in composition. For small plants, renewable jobs account for nearly

50% of the total extraprovincial employment, a proportion that remains broadly similar for

medium-sized plants. In the case of large plants, renewable employment emerges primarily

after the construction phase and reaches approximately one job per megawatt installed.

Together, these results suggest that plant size plays an important role in shaping the

employment impact of solar deployment. Aggregated figures, such as those reported in

Section 6.1 or in Fabra et al. (2024), are heavily influenced by the characteristics of large-scale

projects (although smaller plants also alter the shape of the response, they do not substantially

affect its overall magnitude). Disentangling the effects by plant size reveals that small and

medium installations contribute to job creation in different ways -either through local hiring

or through spillovers- while large projects, though dominant in capacity, tend to generate

fewer jobs per MW.

In contrast to solar, where the distribution of installed capacity is highly skewed, wind

installations exhibit a much more uniform distribution across plant sizes. This characteristic

allows us to explore employment effects in a more continuous fashion across the plant

size spectrum. Rather than discretizing plants into a few large categories, we implement a

rolling-window approach to better capture the gradual evolution of employment intensity

with size. More specifically, after sorting wind plants by ascending size, we construct a set

of 61 overlapping percentile windows of width 41. That is, the first group includes plants

from the 0th to the 40th percentile of the size distribution, the second from the 1st to the 41st
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percentile, and so on, up to the final window covering percentiles 60 to 100. For each window,

we estimate impulse response functions for employment outcomes. Results are presented

as 3D plots: the x-axis represents event time (horizons), the y-axis represents the starting

percentile of each window, and the z-axis displays the estimated number of employees per

additional MW installed.

Figure 12: IRFs to an additional MW of wind installed capacity

(a) Employment (b) Renewable employment

Figure 12a shows the results for total provincial employment. A clear and consistent

temporal dynamic emerges across all plant sizes: the employment effect rises steadily until

around 𝑡 = 0, the point at which the plant becomes operational, after which it stabilizes or

slightly declines. However, the magnitude of the employment effect varies sharply by size.

For the largest plants (upper percentile windows), the impact reaches approximately 7 jobs

per MW. In contrast, the smallest plants exhibit dramatically higher estimated impacts -up

to 97 jobs per MW in the lowest percentile group (for a more detailed breakdown, refer to

the tables in Appendix 3). These results suggest strong and continuous economies of scale:

as plant size increases, the number of local jobs created per MW falls significantly. This is
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consistent with the findings of Costa and Veiga (2021), who argue that the effects of wind

energy depend strongly on plant size.

It is worth noting, however, that while effects for larger plants are statistically significant,

the confidence intervals widen substantially as plant size decreases. This implies that

although smaller plants may create more jobs per unit of capacity, the estimates are less

precise -likely reflecting greater heterogeneity in local implementation strategies, and labor

sourcing. Another contributing factor could be that many small projects were developed

during the initial stages of deployment, at a time when installation technologies and processes

were less mature and potentially less productive.

A similar pattern is observed in renewable employment, as shown in Figure 12b. The

overall dynamics mirror those of total employment, with green jobs peaking just before

commissioning and accounting for roughly 20% of total employment, consistent with baseline

findings in Section 6.1. Again, larger plants generate more stable and significant effects,

while smaller plants show larger but noisier estimates.

Figure 13: IRFs to an additional MW of wind installed capacity

(a) Extraprovincial Employment (b) Extraprovincial Renewable employment
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Turning to extraprovincial employment effects, both total and renewable, the results are

slightly different from the provincial ones. As shown in Figures 13a and 13b, the estimated

spillovers are close to zero for most plant sizes. This reinforces the earlier conclusion

seen in the case of solar that large-scale projects tend to internalize most of their labor and

supply chains within the host province. Notably, total provincial employment for large wind

plants is the most robust and significant effect across all outcomes. In contrast, for smaller

plants, extraprovincial employment gains become more prominent. The estimates indicate

meaningful spillovers, particularly around the construction phase, effectively exporting labor

demand to economically connected regions, but with greater margin of error.

In summary, smaller wind plants generate higher employment effects both within and

outside the host province, albeit with greater uncertainty. These results provide further

evidence of scale effects: not only do smaller plants require more labor per MW, but they

also depend more heavily on extraprovincial inputs. This complements our findings for solar

and confirms that aggregated figures, such as those in Section 6.1 or in Fabra et al. (2024),

are heavily shaped by the characteristics of large-scale projects.

6.5 Heterogeneity by education level

One additional advantage of using microdata from the Spanish Labor Force Survey is the

ability to disaggregate employment impacts by education level. This enables us to test whether

the jobs created through renewable energy deployment are concentrated among more highly

educated workers, or whether they are more evenly distributed. A priori, one might expect

renewable-related employment, particularly in sectors like engineering or plant operation -to

favor workers with higher education credentials. However, previous sections have shown

that a substantial share of the observed effects are concentrated in the construction phase,

and that green or specialized occupations capture only part of the total employment impact.

Thus, it is not immediately obvious how education levels map onto the observed labor market
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response. We turn to the data to answer this question directly. For this analysis, we classify

workers into three education groups:

1. Low education: Less than vocational training,

2. Medium education: Vocational training,

3. High education: Bachelor’s degree or higher.

In our sample, individuals with less than vocational training account for approximately

59.7% of the working-age population, while those with vocational training and those with

a university degree or higher represent 28.3% and 12%, respectively. These proportions

have evolved gradually over the past two decades, with a steady increase in the share of the

population attaining vocational or higher education qualifications.

Figure 14: IRFs to an additional MW of solar installed capacity by level of studies

(a) Employment (b) Extraprovincial employment
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Figure 14a presents the impulse response functions for the effect of one additional

megawatt of solar capacity on provincial employment, broken down by education level. We

find that employment gains are more significant statistically for workers with vocational

training. These effects emerge mainly during the construction phase and remain significant

throughout (3 jobs per MW). In contrast, for workers with less than vocational education,

we observe a slighly higher effect, around 6.2 additional jobs per MW, but with lower

statistical precision (significant at the 68% confidence level but not at 84%). Interestingly, the

employment response for this group is concentrated after the plant becomes operational, which

may indicate that these workers are more likely to be hired for supervision or maintenance-

related tasks requiring limited formal education. Finally, the employment effect for the

high-education group is close to zero and statistically insignificant throughout the entire

period, albeit with wide confidence bands. This may reflect greater heterogeneity in where

and when highly educated workers are employed, potentially concentrated in large-scale

projects, as seen in our earlier plant size analysis. When aggregating across education

groups, the total estimated employment effect closely matches the baseline dynamic responses

presented in Section 6.1, providing an additional layer of robustness to our core findings.

Turning to extraprovincial employment effects, the story differs. Figure 14b shows that

for workers with low education, the extraprovincial impact is smaller than the provincial one,

more than half as large (2.2 jobs per MW), but more precisely estimated and concentrated

during the construction phase. This is consistent with the idea that workers with minimal

qualifications may be temporarily contracted from neighboring regions to perform basic

construction tasks, likely because specialized firms are concentrated in certain provinces.

On top of that, there may also be a positive effect on extraprovincial employment stemming

from jobs in solar panel manufacturing facilities, which, in most cases, do not require highly

qualified workers.

In contrast, the employment effect for vocational-trained workers (1.8 jobs per MW) shifts
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towards the post-commissioning period. This suggests that workers with technical training

may be hired in other provinces for tasks related to plant operation and maintenance, rather

than construction and appear to be carried out either remotely or by workers based in other

provinces who commute for work. This pattern is reinforced in the case of highly educated

workers, whose extraprovincial employment effect is also close to 1.5 jobs per MW and

statistically significant. This likely reflects the geographic concentration of skilled labor in

specific provinces or urban centers, consistent with our earlier findings on renewable-related

occupations. As previously discussed, this also reflects the fact that the headquarters of

major firms are typically located in specific areas, which in turn leads to a higher share of

employment contracts being formalized there.

In summary, the education-level analysis reveals a nuanced pattern. At the local level,

most of the employment created after the construction phase appears to involve workers with

lower levels of formal education, likely hired for routine monitoring or basic supervisory

tasks. When more qualifications are required, however, hiring tends to favor individuals

with vocational training. In contrast, the extraprovincial effects suggest that more highly

qualified personnel, particularly those with vocational or higher education, manage, operate,

or supervise the plants remotely or commuting from their home provinces, rather than

relocating to the installation sites. Meanwhile, less-qualified workers are also recruited

externally, either for the construction phase or to assemble the panels in manufacturing

facilities located in provinces different from where the solar plants are installed. These

findings align with prior work (e.g., Vona et al. 2018) showing that green employment can

span a wide range of occupations and education levels, with job creation occurring both in

high-skill and middle-skill segments depending on the task and phase of project deployment.

The education-level patterns for wind deployments display some important similarities

with those of solar, but also reveal notable differences. Figure 15a presents the estimated

provincial employment responses to one additional MW of wind capacity, disaggregated by
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Figure 15: IRFs to an additional MW of wind installed capacity by level of studies

(a) Employment (b) Extraprovincial employment

education level. As with solar, we observe the most robust effects for workers with vocational

training, approximately 5 workers per MW. The dynamic response follows a similar trajectory,

with statistically significant job creation beginning during the construction phase and persisting

around the time of plant commissioning. Workers with lower educational attainment (less

than vocational training) exhibit a positive but statistically insignificant response, which, as in

the case of solar, emerges primarily in the post-operational phase (5 jobs per MW). The key

difference with respect to solar arises in the case of high-educated workers. While the effects

remain statistically insignificant at 84% confidence levels, they grow larger and approach

significance towards the end of the horizon (3 jobs per MW). This pattern suggests that, at

the provincial level, wind projects may generate more demand for university-educated labor

during the operational phase. This could be related to the complexity of managing wind

installations and the more technical nature of their maintenance requirements as mentioned
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by International Renewable Energy Agency (2017, 2022). Importantly, the uncertainty may

also reflect variation in the local supply of highly educated workers. Not all provinces have

the same pool of university-trained professionals, and some projects may require drawing

from labor markets beyond the immediate region. This issue has already been noted for

the Spanish labor market more broadly. Gutiérrez et al. (2023) document persistent spatial

mismatches between the distribution of economic activity and population across provinces.

Turning to extraprovincial employment, the dynamics differ from those observed for

solar. Figure 15b shows that wind projects generate significant extraprovincial employment

among highly educated workers starting as early as the construction phase. The estimated

effect peaks at around 2.2 jobs per MW for university-educated workers residing in other

provinces. This contrasts with solar, where high-skill employment spillovers emerge only

after plants become operational. For workers with low and medium education levels, we find

no statistically significant extraprovincial employment response. This may suggest that wind

projects rely more heavily on local hiring for technical roles, or that external recruitment of

these workers is more limited.

Overall, wind deployments appear to generate more consistent and earlier labor market

impacts among highly educated workers compared to solar. Vocational-trained workers tend

to benefit primarily at the local level, while university-educated workers are more likely to

be recruited outside the province, particularly during the construction and early operation

phases. This pattern likely reflects the high qualification requirements associated with both

the assembly and supervision of wind plants, activities that can often be performed remotely

or commuting from a province different from where the wind plant is physically located.

Broadly speaking, the distribution of workers by education level differs substantially between

technologies. In the case of solar, using the peak values of the median impulse response

functions to calculate the shares, approximately 56% of the new workers fall into the low

education categories, 29% in the medium education category, with the remaining 15% having
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higher education. In contrast, the distribution for wind is markedly different: 40% of workers

have low education, 37% medium education, and 23% hold a university degree or higher.

These figures suggest that the educational requirements in the renewable energy sector are

generally higher than those observed in the average Spanish job -particularly in the case of

wind energy.

These patterns point to the importance of regional educational supply and mobility in

shaping the distribution of employment gains from the energy transition. As renewable

investments expand, ensuring that local labor markets can meet the growing demand for

technical and higher education profiles may become a key challenge for equitable and efficient

implementation.

7 Employment from renewable expansion in Spain

7.1 Estimated historical impact of renewable deployment (2005–2024)

To quantify the historical employment impact of renewable energy deployment, we combine

quarterly data on installed capacity by province and technology over the period 2005–2024

with the estimated impulse response function discussed in previous sections. Leveraging the

analytical framework developed in this paper, we distinguish between intraprovincial and

extraprovincial employment effects. Specifically, we apply the dynamic responses estimated

in Section 6.1 to capture the intraprovincial effect of capacity additions within each province,

and those in Section 6.2 to estimate extraprovincial effects arising through interprovincial

economic linkages.

Employment effects are computed dynamically for each installation shock. Starting at

quarter t = –8, we apply the full IRF up to t = 4, after which the final value is assumed to

persist indefinitely. This simplifying assumption, motivated by the fact that all four IRFs
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remain statistically significant at t = 4, implies that employment impacts are treated as

permanent from that point onward. While this assumption may lead to an upward bias,

particularly for early-period installations, it provides a tractable and consistent method for

long-run aggregation across provinces. It also offers a useful order-of-magnitude estimate of

the cumulative labour market impact of Spain’s renewable deployment.

This methodology could be understood as providing an upper-bound approximation of

sustained employment creation over the full 2005–2024 period. Given the long time horizon,

it is plausible that some of the jobs initially created may have been subsequently lost, either

due to natural turnover, technological change, or the decommissioning of earlier projects.

At the same time, our use of the median impulse response across horizons introduces an

additional layer of variability. In the presence of estimation uncertainty, the realized effects

are likely to lie within a distribution around this central estimate, with plausible outcomes

both above and below the figures presented. To maintain tractability, we apply a single

response per channel (solar/wind, provincial/extraprovincial) throughout the entire sample.

This modelling choice is supported by the empirical results discussed in earlier sections, and

avoids the additional complexity involved in applying dynamic responses differentiated by

time period or plant size. Nonetheless, as discussed in Section 6.3, the estimated IRFs are

clearly influenced by more recent installations -particularly larger projects. This may lead to a

slight underestimation of effects associated with early deployments and a mild overestimation

of those linked to the latter part of the sample. Figure 16 shows the cumulative employment

generated by renewable deployment between 2005 and 2024, disaggregated by technology

(solar vs. wind) and employment channel (provincial vs. extraprovincial). The results reveal

substantial variation across provinces in both the magnitude and composition of employment

creation, suggesting that applying the national average effect may lead to an overestimation

of impacts in smaller, more rural provinces- and, by extension, an underestimation in the rest.

In absolute terms, Zaragoza leads with more than 60,000 cumulative jobs, followed, at
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Figure 16: Estimated historical impact of renewable deployment (2005–2024)
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some distance, by Badajoz, Cuenca, Cáceres, Albacete, Cádiz, Sevilla, and Burgos. These

provinces have cumulative totals ranging from approximately 34,400 to 23,000 jobs. For

a breakdown of what these figures represent relative to total provincial employment, refer

to Appendix 4.

Notably, the dominant technology varies considerably across regions: e.g. wind in

Zaragoza and Burgos, solar in Badajoz and Murcia. Similarly, the timing of growth is

heterogeneous. For instance, Zaragoza and Badajoz experienced rapid expansion over the

past 6–7 years, while others, such as Bizkaia or Alicante, exhibit more gradual and sustained

growth. In nearly all provinces, the two deployment phases identified in Sections 4 and 6.3

are clearly distinguishable. In total, we estimate nearly half a million jobs (579,082) were

created between 2005 and 2024 as a result of renewable deployment. Relative to the national

employment level in 2024, this represents approximately 2.7 percent of total employment.

The distribution by technology is relatively balanced, with 53 percent of cumulative jobs

attributable to wind and 47 percent to solar. Furthermore, approximately 92.4 percent of

the employment generated corresponds to direct jobs within the province where capacity

was installed, while the remaining 7.6 percent, roughly 43,500 jobs, represents indirect or

extraprovincial employment. Among these, several provinces stand out due to their economic

centrality in the renewable value chain: Madrid accounts for 10.2 percent of all indirect jobs,

followed by Sevilla (6.2 percent), Barcelona (6.5 percent), Valencia (5.8 percent), Tarragona

(4 percent) and Toledo (3.7 percent).

These results are consistent with a protracted and meaningful impact of renewable energy

investments on local labour markets in Spain over the past two decades. They also highlight

the persistent geographical asymmetries in job creation, as well as the differentiated roles

that provinces play in the deployment and support of renewable technologies.
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7.2 Projected total employment from renewable expansion (2025–2030)

To quantify the potential labor market impact of Spain’s renewable deployment plans, we

apply our estimated employment multipliers to the expansion targets outlined in the Plan

Nacional Integrado de Energı́a y Clima 2023–2030 (MITECO, 2024). According to the latest

figures published by Red Eléctrica de España as of June 2025 (Red Eléctrica de España, 2025),

installed capacity stands at 32.5 GW for onshore wind and 34.9 GW for solar photovoltaic.

These figures fall short of the PNIEC’s intermediate 2025 targets, which aim for 36.15 GW

of wind and 46.5 GW of solar. This represents a gap of approximately 10% in wind and 25%

in solar relative to the 2025 benchmarks.

Looking ahead to 2030, reaching the PNIEC objectives would require an additional

29.55 GW of wind and 41.38 GW of solar PV capacity. Applying our total employment

multipliers -defined as the median value of the IRF at horizon ℎ = 4, in line with the approach

discussed in Section 7.1 for capturing the permanent effect, and summing both provincial

and extraprovincial impacts- we estimate 13,850 jobs per GW for wind and 11,600 for solar.

Based on these figures, the expected expansion between mid-2025 and the end of 2030

would generate approximately 409,267 new jobs from wind and 480,072 from solar, for a

total of 889,340 jobs. These multipliers are drawn from the dynamic responses presented

in Sections 6.1 and 6.2, as they are broadly consistent with the values observed during

the second investment phase, although with some differences, as discussed in previous

sections, which suggest that the resulting figures may be best interpreted as an upper bound.

Nevertheless, using them allows for greater consistency with the long-run interpretation in

Section 7.1, balances the trade-off between simplicity and informativeness, and enables us to

incorporate both within -and beyond-province employment effects.

When distributed evenly over the 5.58 years remaining until the end of the decade, the

estimated figure translate into an average of approximately 159,380 local jobs per year if the
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plan is fulfilled. This is likely an optimistic assumption, given that deployment is already

behind schedule and it is unclear whether the targets, particularly for wind, will be met,

as noted by Rodrı́guez (2025). However, if accomplished, the estimated impact is highly

consistent with the Spanish government’s own projections in the PNIEC, which foresee that

renewable and green hydrogen investments will generate between 138,000 and 199,000 jobs

annually during this period (MITECO, 2024).19 This number is particularly relevant when

placed in context: in the last two years, 2023 and 2024, Spain created an average of 625,550

new jobs annually. Therefore, if job growth continues at a similar pace, employment linked

to the energy transition would represent around 25% of total job creation, an economically

significant and probably overly optimistic contribution. It is worth noting that the jobs

created by renewable investments may, over a longer horizon, be offset by job losses in

carbon-intensive (or “brown”) sectors.20 This would be a plausible dynamic, as fossil-based

plants are not typically shut down immediately upon the entry of renewables. Rather, they

are gradually displaced from the energy mix as cleaner technologies expand their market

share and push conventional sources out of operation. It is also important to note that the jobs

estimated here include both direct employment in renewable energy activities and indirect

employment generated in other occupations, such as hospitality or local services, that benefit

from increased economic activity and local income effects.

Adopting a more conservative approach by using the average multiplier across horizons,

rather than the last value, leads to a lower estimate. Focusing on the mean effects, the

employment multipliers fall to approximately 5,887 jobs per GW for solar and 6,509 jobs per

GW for wind. Applying these to the 41.38 GW of solar and 29.55 GW of wind capacity still

19Our figure assumes that the delays will be made up for, so if everything had proceeded on schedule until
now, the number would actually be lower.

20Since the EPA reports employment stocks rather than labor market flows, the data do not allow us to track
individual transitions between employment states, occupations or sectos (e.g., from unemployment or inactivity
to employment). As a result, we cannot directly observe whether renewable deployment leads to job creation
through new hires, reactivation of inactive workers, or shifts across sectors.
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to be installed yields roughly 243,595 jobs for solar and 192,340 jobs for wind. Together,

this amounts to approximately 435,937 jobs, or about 49% of the 889,340 jobs estimated

under the last-period multipliers. Finally, it is also informative to compare our projections

with those of Fabra et al. (2024), who estimate that solar investments will generate around

5,682 local jobs per year over the decade, based on second-wave multipliers (which could

reach up to 37,090 jobs per year using their county-level estimators for solar, compared to

our 86,034 using our solar multiplier). The discrepancy likely reflects both methodological

and definitional differences, as well as broader geographical coverage in our analysis.

Overall, our findings reinforce the view that the renewable energy transition outlined

in the PNIEC holds significant potential for local employment generation. Ensuring that

this potential is fully realized will depend not only on meeting capacity targets, but also on

investment timing, regional execution strategies, and the distribution of project scales across

Spanish provinces. Projections suggest that approximately 37,000 of the 480,072 new jobs

in the solar sector, and 71,000 of the 409,267 total jobs expected from wind deployment,

will be created in occupational categories identified throughout this work as particularly

intensive in green skills. This implies a total of around 110,000 new green-skilled positions

over the coming years, equivalent to 20,000 per year, or roughly 3% of the average annual job

creation observed in Spain in recent years. At the same time, using the education-level shares

estimated in Section 6.5, we can approximate how the projected employment from renewable

deployment would be distributed across education groups. For solar, approximately 271,462

would correspond to workers with low education, 192,849, to those with medium education,

and 15,761 jobs to workers with high education. For wind, of the 409,267 jobs projected, an

estimated 155,177 would go to workers with low education, 104,061 to those with vocational

training or medium education, and 150,029 to highly educated workers. In total, these figures

imply that approximately 426,640 jobs would be created for workers with low education,

296,910 for those with vocational training, and 165,790 for university-educated workers.
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Ensuring that the labor market can supply this volume of green-skilled workers is likely to be a

major challenge, particularly given current constraints. As noted by Garcı́a and Lores (2025),

shortages in technically qualified labor are already a limiting factor in sectors like construction.

Similarly, LinkedIn (2024) and Kaura (2024) emphasized persistent gaps between green

skills demand and workforce readiness in global labor markets. In Spain, SEPE (2024) also

highlights shortages in green-related management knowledge (e.g., environmental regulation

compliance) and technical competencies (e.g., energy efficiency or waste management).

7.3 Projected provincial employment from renewable expansion (2025–

2030)

To assess the spatial implications of this transition, we allocate projected employment across

provinces using the observed historical distribution of installed solar and wind capacity,

distinguishing between intraprovincial and extraprovincial effects. This approach ensures that

the geographic distribution of employment associated with the PNIEC aligns with deployment

patterns observed thus far, which are largely driven by the availability of natural resources

(solar irradiation and wind intensity) and the presence of spare transmission capacity, as

emphasized by Fabra et al. (2024). Provincial employment is defined as jobs created within a

province as a result of renewable capacity installed in that same province. Extraprovincial

employment refers to jobs generated in a province due to capacity installed elsewhere, based

on economic interdependencies across provinces, captured through interregional linkages.

The resulting estimates reveal substantial heterogeneity across both geographic space

and employment channels. Figure 17 disaggregates projected employment into four

categories: provincial solar, provincial wind, extraprovincial solar, and extraprovincial

wind. Unsurprisingly, provinces with high historical or projected renewable deployment

concentrate the bulk of provincial employment effects. For instance, Zaragoza is projected to
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generate nearly 81,300 new provincial jobs, of which over 52,300 are associated with wind

projects. Burgos and Albacete follow, with approximately 28,400 and 22,600 intraprovincial

wind jobs, respectively. In contrast, provinces such as Badajoz (54,720), Cáceres (43,855),

and others including Sevilla, Cuenca, and Ciudad Real (each around 30,000) are expected

to lead in solar-related provincial employment. Other provinces with projected totals above

25,000 jobs from both technologies include Cádiz, Murcia, and Valladolid.

By contrast, more urbanized and industrial provinces such as Barcelona, Madrid, or

Bizkaia record comparatively modest levels of intraprovincial employment -each under 5,500

jobs, and in the case of Bizkaia and Madrid, even below 1,000. This reflects both physical

constraints on land availability and a lower prevalence of utility-scale renewable projects

in these regions. Nevertheless, such provinces are expected to benefit significantly through

indirect employment spillovers. These effects are more diffuse. For example, Madrid is

projected to gain nearly 10,500 additional jobs through such indirect channels, despite its

limited local deployment. Similar spillover effects are observed in Valencia, Barcelona, and

Sevilla, all of which play key roles as economic hubs in the national renewable energy value

chain.

In relative terms, the intensity of employment growth is best captured by annualized

changes over the existing provincial labour market, as shown in Figure 18, disaggregated

across the same four employment channels. Focusing first on direct effects, Cuenca emerges

as the province with the highest projected average annual employment growth, reaching

8.5 percent, of which approximately 70 percent is attributable to solar deployment. Soria

follows, with a 5.8 percent growth rate almost entirely explained by wind installations (close

to 85 percent of the total), along with Teruel (5.2 percent, 55 percent wind-driven), Cáceres

(5 percent, 96 percent solar), Albacete (3.8 percent, 64 percent wind), and Palencia (3.7

percent, 80 percent solar). These are substantial effects in the context of annual labour market

dynamics, especially considering that provincial employment growth in recent years has rarely
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Figure 17: Spatial distribution of total employment generated by renewable deployment
under the PNIEC (2025–2030)

(a) Provincial solar jobs (2025–2030) (b) Provincial wind jobs (2025–2030)

(c) Extraprovincial solar jobs (2025–2030) (d) Extraprovincial wind jobs (2025–2030)
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exceeded 3% in aforementioned provinces. This may suggest that we are likely overestimating

the impact in smaller provinces, where even modest job creation could represent an unusually

large percentage increase. At the same time, since our coefficients reflect the average impact

across all provinces in Spain, it is also plausible that we are underestimating the true effect

in larger provinces with fewer megawatts installed. Future research could explore this

heterogeneity more explicitly by disaggregating impacts by province size or labour market

characteristics. Another relevant consideration is that the future distribution of installed

megawatts may differ from historical patterns.

All of the provinces with high annual employment growth values share two structural

characteristics: a high concentration of renewable deployment and relatively small labour

markets. The combination of both factors magnifies the observed employment growth rates.

Other provinces with notable direct employment growth, in the range of 2 to 3.5 percent

annually, include Badajoz, Zamora, Burgos, Zaragoza, Ciudad Real, Guadalajara, Lugo, and

Valladolid.

At the opposite end of the distribution, the impact of direct renewable deployment on

employment remains very limited in urban provinces such as Madrid, Gipuzkoa, Bizkaia,

Girona, Barcelona, Cantabria, or Alicante. In these cases, the annual employment growth

attributable to direct renewable deployment does not reach 0.1 percent. This muted effect

reflects a combination of large existing employment bases and limited availability of land or

political space for large-scale renewable installations.

Turning to indirect employment, its relative contribution is more modest. The province

with the highest projected annual growth in indirect employment is Cuenca, at around 0.3

percent, followed by Soria, Palencia, Zamora, Ciudad Real, Huesca and Huelva, each with

approximately 0.25 percent. In large metropolitan areas such as Sevilla (0.15 percent), Madrid

(0.06 percent), or Valencia (0.09 percent), indirect employment effects are not negligible in

absolute terms, but remain limited when considered relative to total employment. These
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patterns reflect the more diffuse and distributed nature of extraprovincial spillovers, which

tend to be diluted in large labour markets.
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Figure 18: Projected annual employment growth by province from renewable energy
deployment under the PNIEC (2025–2030)

(a) Annual growth of provincial solar jobs (b) Annual growth of provincial wind jobs

(c) Annual growth of extraprovincial solar jobs (d) Annual growth of extraprovincial wind jobs
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8 Conclusion

This paper offers an innovative assessment of the employment impacts of utility-scale

renewable energy deployment in Spain, using quarterly data from the Spanish Labour Force

Survey and detailed administrative records of wind and solar installations. We implement a

flexible panel local projection framework to estimate dynamic responses to installed capacity

shocks, disaggregated by technology, project phase, education level, and plant size.

Our findings reveal that both solar and wind energy investments generate substantial

provincial employment gains, though with important differences in magnitude, composition,

and spatial distribution. On average, each additional megawatt of installed solar capacity

generates around 10.15 new jobs within the host province, while wind projects create

approximately 12.4 provincial jobs per MW. However, the nature of these jobs differs: in

the case of solar, the employment increase is concentrated in mid-skill occupations, with

virtually none corresponding to renewable skill-intensive occupations as defined by the ESCO

taxonomy. In contrast, for wind, approximately 2.4 out of the 12.4 provincial jobs per MW

qualify as renewable-intensive, reflecting higher specialization requirements.

Beyond the host province, we also identify sizable extraprovincial spillovers. Solar

investments generate an additional 2.8 jobs per MW in economically connected provinces

at the peak of the response, of which at least one corresponds to a green skill-intensive

occupation. Wind installations yield approximately 1.5 extraprovincial job per MW, with

one-third being classified as green skill-intensive. These patterns underscore the importance

of interregional labor mobility and the external sourcing of specialized tasks.

The effects exhibit strong heterogeneity across phases and technologies. This is particularly

pronounced for solar, where dramatic cost reductions over time have been accompanied by a

shift toward fewer but significantly larger plants. As a result, employment effects in the first

deployment phase were nearly 13 times greater than in the second phase for solar, and about
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2.5 times greater for wind. This evolution becomes even clearer when disaggregated by plant

size. In solar, disentangling the effects by size reveals that small and medium installations

contribute to job creation in different ways, either through local hiring or via spillovers,

whereas large plants, though dominant in cumulative capacity, tend to generate fewer jobs

per MW. For wind, smaller installations generate higher employment effects both within and

beyond the host province, albeit with greater estimation uncertainty. These patterns confirm

strong scale effects: smaller plants are both more labor-intensive and more reliant on external

labor markets.

When examined through the lens of education, the analysis reveals a nuanced distribution

of gains. For solar, local jobs created after the construction phase primarily benefit workers

with lower educational attainment, likely engaged in routine monitoring and supervision. In

contrast, when more technical qualifications are required, the main beneficiaries are workers

with vocational training. Extraprovincially, both vocational and highly educated workers

are recruited from other provinces to manage and operate solar plants, while less-qualified

workers are also mobilized for the construction phase. These findings echo those of Vona

et al. (2018), confirming that green employment spans multiple skill tiers and phases.

In the case of wind, employment gains display greater consistency and arise earlier for

highly educated workers, particularly in extraprovincial contexts. While vocational-trained

workers benefit primarily within the province, university-educated professionals are more

frequently hired in other provinces, especially during the construction and early operation

phases. This likely reflects the more stringent skill requirements of wind energy and the

limited availability of such profiles in rural host provinces.

Relative to Fabra et al. (2024), the current benchmark in the literature, our results differ in

several dimensions. First, by working at the provincial level, we are able to detect employment

effects from wind that are absent in municipal-level analyses, and find larger impacts for solar.

Second, we integrate an occupation-based definition of renewable or green employment and
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disaggregate results by education level, showing the importance of both. Third, we quantify

employment multipliers by plant size and investment phase, showing that small and medium

plants rely more on external labor markets and create higher employment per MW. Fourth,

by leveraging interprovincial trade matrices, we provide a novel measure of extraprovincial

spillovers. Finally, using microdata, we are able to distinguish the impact by education level.

These methodological advances translate into high projections of job creation under

Spain’s 2023-2030 Integrated National Energy and Climate Plan (PNIEC). If targets are

met, we estimate the creation of approximately 889,340 local jobs, an average of 159,380

jobs per year between mid-2025 and 2030, compared to 5,682 jobs per year implied by

second-wave estimates in Fabra et al. (2024). Our projections align more closely with official

government figures, between 138,000 and 199,000 jobs annually. Furthermore, projections

suggest that around 110,000 of the new jobs expected under the PNIEC, approximately

20,000 per year, will be created in green skill-intensive occupations, a figure equivalent

to 3% of recent annual job creation in Spain. Meeting this demand poses a significant

challenge given current bottlenecks in the supply of technically qualified labor, particularly in

construction and energy-related occupations. Recent evidence from Spain and other labor

markets highlights persistent gaps in both technical and managerial green competencies,

underscoring the urgency of aligning training systems with the evolving needs of the energy

transition.

Beyond forward-looking projections, our estimates also suggest that renewable deployment

has already had a significant and sustained effect on employment over the past two decades.

Using consistent assumptions and applying median impulse responses to historical capacity

data, we estimate that nearly 579,082 jobs were cumulatively created between 2005 and 2024.

This figure, which can be interpreted as an upper-bound, represents approximately 2.7 percent

of total national employment as of 2024, with a roughly balanced contribution from wind (53

percent) and solar (47 percent) technologies. The vast majority of these jobs, around 92.4
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percent, were generated directly within the provinces where capacity was installed.

Overall, these findings emphasize that the employment benefits of the green transition

depend not only on where and how much capacity is installed, but also on the structure of

the labor market, the plant size, and the strength of interregional linkages, among others.

Realizing the full local employment potential of renewables will require complementary

measures, such as vocational training, labor mobility support, and local hiring incentives to

ensure that gains are inclusive, regionally balanced, and persistent.
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Appendix 1 Bootstrap robustness: accounting for time

heterogeneity

As outlined in Section 5.4, our baseline inference procedure relies on bootstrapping across

provinces by resampling full province-level panels. This approach preserves the original time

structure of the data, keeping fixed the temporal sequencing and distribution of renewable

installations across periods. It captures spatial heterogeneity in the response to renewable

deployment, such as differences across labor markets or provincial exposure to infrastructure,

but does not incorporate uncertainty stemming from the temporal dimension. In this section,

we implement a more demanding inference design by incorporating a two-dimensional (2D)

block bootstrap across both provinces and time. This exercise serves as a robustness check on

our previous results and highlights the role of temporal idiosyncrasies in shaping uncertainty.

The rationale for including time heterogeneity is twofold. First, as documented throughout

this paper, particularly in the discussion of plant size and investment phases, renewable

deployment has been far from uniform over time. Specifically, the period between 2014

and 2018 saw minimal wind expansion, while solar installations were sparse between 2009

and 2019 (see Figure 1). Second, bootstrapping across time allows us to capture additional

sources of uncertainty arising from period-specific shocks and institutional bottlenecks, such

as permitting delays or policy moratoria.

The results of this bootstrap procedure are presented in Figure 19. As expected, introducing

time heterogeneity results in noticeably wider confidence bands, especially in the case of

solar (Figure 19a). This is consistent with the extended periods of low installation activity,

which reduce the effective sample size in some bootstrap replications. Wind installations,

while also affected, exhibit somewhat narrower bands due to more stable deployment patterns

(Figure 19b).
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Figure 19: IRFs to an additional MW of installed capacity (2D Bootstrap)

(a) Solar (b) Wind

Nonetheless, the median impulse response functions remain qualitatively similar to those

obtained with the standard bootstrap. The shape of the dynamic responses is preserved, with

employment peaking around the installation date and subsiding afterward. Interestingly,

the magnitude of the responses under 2D bootstrapping is somewhat larger, 15.3 vs 10.15

employments for solar plants and 15.4 vs 12.4 employments for wind plants, measured one

year after the shock occurs, reflecting the greater weight of small-scale deployments in the

resampled panels. As shown in Section 6.4, these smaller projects tend to have stronger

employment effects per MW, thereby inflating the estimated average in small plant-intensive

samples.

To better understand the source of this uncertainty, we re-estimate the solar IRFs by plant

size under the 2D bootstrap framework (Figure 20). The resulting pattern is illuminating. For

small plants (Panel 20a), confidence intervals are extremely wide, highlighting the sparse and

erratic nature of deployment over time. This confirms our earlier claim that small projects,

while numerous, are unevenly distributed across quarters and heavily concentrated in specific

years. Medium and large plants (Panels 20b and 20c) exhibit tighter confidence bands, albeit

still wider than in the province-only bootstrap. This reflects more regular deployment and

higher temporal clustering in recent years.
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Figure 20: IRFs to an additional MW of solar installed capacity by plant size (2D Bootstrap)

(a) Plants < 49 MW (b) 49 MW ≤ Plants < 127 MW (c) Plants ≥ 127 MW

Overall, these results support the robustness of our main findings but also underline the

challenges of drawing inference in settings with significant temporal and spatial imbalance.

In this context, the standard province-level bootstrap appears to strike a favorable trade-off

between robustness and interpretability. While the 2D bootstrap is theoretically appealing, in

our case, it likely overstates the uncertainty due to the limited number of installation events

in specific years and technologies and the differences between the two renewable deployment

phases. Accordingly, our preferred specification remains the province-level bootstrap, with

the 2D results presented here as a robustness extension.
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Appendix 2 Impulse response functions without smoothing

adjustment

This appendix presents the raw impulse response functions corresponding to Section 6.1,

prior to the application of the penalized local projections (Barnichon and Brownlees, 2019)

procedure. These unsmoothed estimates preserve the original horizon-by-horizon variation

and serve as a robustness check. All dynamic responses are based on the baseline specification

described in Section 5.

Figure 21: IRFs to an additional MW of solar installed capacity

(a) Employment (b) Renewable employment

Figure 22: IRFs to an additional MW of wind installed capacity

(a) Employment (b) Renewable employment
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Appendix 3 Detailed results by wind plant size percentile

To complement the 3D visualizations presented in Figures 12 and 13, this annex reports a

more detail numerical results from the rolling-window estimation of employment impacts

across the wind plant size distribution. Each table shows the estimated number of jobs created

per additional megawatt installed, by event time ℎ (rows) and window starting percentile

(columns). Results are reported for the 32nd percentile (lower bound), the median, and the

68th percentile (upper bound) of the distribution, reflecting estimation uncertainty. The

data confirm a clear pattern of declining employment intensity with plant size, particularly

around the construction phase. They also highlight the increasing role of extraprovincial

labor markets in smaller-scale projects.
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Percentile 32 Median Percentile 68
1 15 30 45 60 1 15 30 45 60 1 15 30 45 60

-8 0.4 2.0 -0.9 -0.7 -0.4 1.2 3.6 0.2 -0.1 -0.0 2.4 5.3 1.3 0.5 0.4
-7 -1.3 -0.2 -0.7 -0.2 -0.1 -0.1 1.0 0.1 0.3 0.2 1.5 2.1 0.9 0.7 0.5
-6 -2.8 -1.8 -1.0 -0.1 0.1 -1.2 -0.7 -0.4 0.3 0.3 0.7 0.4 0.3 0.8 0.6
-5 -3.5 -2.8 -1.5 -0.3 0.1 -1.5 -1.4 -0.8 0.1 0.4 0.8 -0.1 -0.0 0.6 0.7
-4 -2.9 -3.3 -1.8 -0.1 -0.1 -0.3 -1.6 -1.0 0.3 0.3 2.5 0.1 -0.1 0.3 0.3
-3 -1.0 -3.4 -1.9 -1.1 -0.2 2.3 -1.4 -0.9 -0.6 0.2 5.6 0.5 0.1 0.0 0.3
-2 2.2 -3.0 -1.9 -1.4 -0.3 6.3 -0.7 -0.7 -0.8 0.2 10.3 1.4 0.4 -0.2 0.2
-1 6.7 -1.9 -1.8 -1.6 -0.2 11.5 0.7 -0.9 -0.9 0.3 16.4 3.1 1.0 -0.1 0.8
0 10.8 -0.4 -1.7 -1.6 -0.2 16.3 2.6 -0.8 -0.8 0.4 22.1 5.2 1.5 0.0 1.0
1 13.5 1.1 -1.7 -1.6 -0.2 19.5 4.3 0.1 -0.7 0.5 26.0 7.2 1.8 0.2 1.1
2 14.2 2.0 -2.1 -1.8 -0.3 20.3 5.4 -0.1 -0.8 0.4 27.0 8.4 1.7 0.1 1.0
3 12.6 2.4 -2.1 -1.8 -0.4 18.4 5.5 -0.2 -0.8 0.2 24.7 8.5 1.5 0.1 0.8
4 8.8 2.0 -1.5 -1.3 -0.4 13.4 4.6 -0.0 -0.5 0.1 18.5 7.1 1.4 0.3 0.6

Table 1: Estimated jobs per additional MW installed – Provincial total employment

Percentile 32 Median Percentile 68
1 15 30 45 60 1 15 30 45 60 1 15 30 45 60

-8 16.3 7.9 -2.3 -2.0 -1.9 18.8 12.5 0.5 0.2 -0.8 21.5 17.9 3.6 2.5 0.2
-7 12.7 10.5 0.1 -2.1 -1.4 17.1 13.7 2.2 -0.7 -0.7 21.3 17.6 4.6 0.8 0.0
-6 9.9 10.9 -0.2 -2.1 -1.1 16.1 14.0 1.9 -0.9 -0.4 21.7 17.5 4.2 0.2 0.4
-5 9.0 10.4 -1.6 -1.6 -0.6 16.4 14.1 0.7 -0.3 0.2 22.9 17.9 3.2 1.0 1.3
-4 10.8 10.8 -2.7 -1.3 -0.4 18.8 15.1 -0.0 0.4 0.7 26.1 19.6 3.0 2.0 2.1
-3 12.1 10.7 -3.5 -1.4 -0.6 20.7 15.6 -0.5 0.8 0.8 28.7 20.9 3.0 2.9 2.4
-2 13.3 10.7 -3.9 -1.0 -0.7 22.6 15.9 -0.6 1.6 1.0 31.1 21.7 3.2 4.2 2.7
-1 16.1 11.3 -4.0 -0.6 -0.7 26.8 17.2 -0.5 2.4 1.2 36.4 23.7 3.6 5.6 2.8
0 18.3 11.2 -4.8 -0.7 -0.8 31.7 18.2 -0.8 2.8 1.3 43.1 25.5 3.6 6.5 3.0
1 16.9 9.1 -6.4 -1.3 -1.2 33.6 17.5 -1.7 2.7 1.1 47.0 25.8 3.2 7.1 2.9
2 13.6 5.8 -7.6 -1.8 -1.7 32.0 15.0 -2.5 2.4 0.7 46.3 23.9 2.8 7.0 2.5
3 11.0 3.3 -7.9 -2.2 -1.9 29.5 12.3 -3.0 1.8 0.2 43.7 20.9 2.1 6.1 1.9
4 11.3 4.2 -6.2 -2.2 -1.9 27.1 11.6 -2.1 1.1 -0.1 39.5 18.9 2.1 4.6 1.2

Table 2: Estimated jobs per additional MW installed – Provincial renewable employment
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Percentile 32 Median Percentile 68
1 15 30 45 60 1 15 30 45 60 1 15 30 45 60

-8 2.5 10.9 -3.2 -3.2 -2.4 5.3 15.5 -0.0 -1.4 -1.2 8.1 20.1 2.9 0.2 -0.2
-7 4.9 6.6 -2.7 -1.1 -1.3 8.5 10.0 -0.5 0.1 -0.3 12.4 13.2 1.9 1.4 0.5
-6 8.7 5.2 -3.0 -0.3 -0.5 13.2 8.3 -1.0 0.8 0.4 18.0 11.4 1.3 2.0 1.3
-5 12.2 4.6 -4.0 -1.2 -0.8 18.0 8.0 -1.9 0.0 0.2 23.8 11.5 0.7 1.3 1.3
-4 16.1 4.4 -5.2 -2.8 -1.6 23.6 8.4 -2.6 -1.3 -0.4 30.5 12.3 0.2 0.1 0.8
-3 20.9 4.4 -6.0 -4.1 -2.3 30.2 9.1 -3.1 -2.2 -1.0 38.3 13.4 0.1 -0.7 0.3
-2 25.8 4.2 -6.7 -4.7 -2.4 36.6 9.6 -3.5 -2.6 -1.1 46.5 14.3 0.1 -0.9 0.4
-1 31.8 5.0 -7.0 -5.0 -2.4 44.1 11.2 -3.4 -2.7 -0.9 56.2 16.5 0.6 -0.7 0.9
0 39.0 7.5 -6.8 -5.2 -2.5 52.8 14.5 -2.6 -2.7 -0.7 67.2 20.8 1.8 -0.6 1.1
1 45.5 11.3 -6.0 -5.4 -2.8 60.4 18.8 -1.4 -2.9 -1.0 76.4 26.0 3.4 -0.5 1.1
2 50.0 14.7 -5.5 -5.8 -3.3 65.3 22.6 -0.8 -3.2 -1.5 81.7 30.5 4.5 -0.8 0.6
3 49.3 16.1 -5.0 -6.1 -3.5 64.0 23.9 -0.5 -3.6 -1.9 79.5 31.5 4.8 -1.3 0.1
4 39.9 14.3 -3.7 -5.1 -2.9 52.1 20.9 -0.0 -2.9 -1.6 65.1 27.4 4.7 -1.0 0.0

Table 3: Estimated jobs per additional MW installed – Extraprovincial total employment

Percentile 32 Median Percentile 68
1 15 30 45 60 1 15 30 45 60 1 15 30 45 60

-8 0.4 2.1 -0.9 -0.7 -0.4 1.3 3.6 0.2 -0.1 -0.0 2.4 5.3 1.3 0.5 0.4
-7 -1.3 -0.2 -0.7 -0.2 -0.1 -0.1 1.0 0.1 0.3 0.1 1.5 2.1 0.9 0.7 0.5
-6 -2.7 -1.8 -1.0 -0.0 0.1 -1.2 -0.7 -0.4 0.3 0.3 0.7 0.4 0.3 0.8 0.6
-5 -3.5 -2.8 -1.5 -0.3 0.1 -1.5 -1.4 -0.8 0.1 0.4 0.8 -0.1 -0.0 0.6 0.7
-4 -2.9 -3.3 -1.8 -0.7 -0.1 -0.3 -1.6 -1.0 -0.3 0.3 2.5 0.1 -0.1 0.3 0.7
-3 -1.0 -3.4 -1.9 -1.1 -0.2 2.3 -1.4 -0.9 -0.6 0.2 5.6 0.5 0.1 -0.0 0.6
-2 2.2 -3.0 -1.9 -1.4 -0.3 6.3 -0.7 -0.7 -0.8 0.2 10.3 1.4 0.4 -0.2 0.7
-1 6.7 -1.9 -1.8 -1.5 -0.2 11.5 0.7 -0.4 -0.9 0.3 16.4 3.1 1.0 -0.1 0.8
0 10.8 -0.3 -1.6 -1.6 -0.2 16.3 2.6 -0.0 -0.8 0.4 22.1 5.2 1.5 0.0 1.0
1 13.5 1.1 -1.7 -1.6 -0.2 19.5 4.3 0.1 -0.7 0.5 26.0 7.2 1.8 0.2 1.1
2 14.2 2.0 -2.1 -1.8 -0.3 20.3 5.4 -0.1 -0.8 0.4 27.0 8.4 1.7 0.1 1.0
3 12.6 2.3 -2.1 -1.8 -0.4 18.4 5.5 -0.3 -0.8 0.2 24.7 8.5 1.5 0.1 0.8
4 8.8 2.0 -1.5 -1.3 -0.4 13.4 4.6 -0.0 -0.5 0.1 18.5 7.1 1.4 0.3 0.6

Table 4: Estimated jobs per additional MW installed – Extraprovincial renewable employment
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Appendix 4 Estimated historical impact of renewable

deployment as a share of total employment

As shown in Figure 16, the provinces of Zaragoza, Badajoz, Cuenca, Cáceres, and Albacete

appear to have been the most positively affected by the deployment of renewable energy

in Spain. When measured as a share of total provincial employment, the rural provinces

of Spain’s Meseta Central stand out as key beneficiaries of this expansion, as illustrated in

Figure 23.

Cuenca, in particular, displays the most pronounced effect, with renewable-related

employment reaching nearly 30% of total provincial employment. This impact is driven by

substantial deployment of both wind and solar technologies, with solar alone accounting

for almost 60% of renewable-related jobs in recent years. It is important to note that these

figures capture not only direct employment associated with the construction and operation of

renewable plants, but also indirect and induced employment effects. Indirect employment

refers to jobs created along supply chains and in auxiliary services essential to deployment,

such as transportation, equipment provision, and component manufacturing (e.g., wind

turbine blades). Induced employment, in turn, arises from increased local demand generated

by the consumption of workers involved in renewable energy projects.

Figure 23 highlights the historical employment impact of renewables in provinces

suffering from sustained demographic decline -typically rural areas in the Meseta with

abundant natural resources, particularly solar potential. Thus, the figure illustrates the extent

to which renewable energy investments have contributed, and may continue to contribute, to

reversing or mitigating population loss by generating employment in territories traditionally

underserved by industrial or service-sector activity.

In this context, renewable energy emerges not only as a pillar of the green transition, but
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also as a potential lever for regional revitalization and territorial cohesion. However, it is

important to note that, for these provinces, the estimated effects could be interpreted as an

upper bound, given the identification assumptions discussed in Section 7.1.
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Figure 23: Estimated historical impact of renewable deployment (2005–2024).(%)
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